Estimating Minimal Domains of Attraction for Uncertain Nonlinear Systems

被引:10
作者
Wang, Shijie [1 ]
She, Zhikun [1 ]
Ge, Shuzhi Sam [2 ]
机构
[1] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119077, Singapore
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2021年 / 51卷 / 12期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Estimation; Uncertain systems; Trajectory; Lyapunov methods; Nonlinear systems; Iterative methods; Programming; Level-set functions; minimal domains of attraction (MDA); parameter-dependent Lyapunov-like functions; sum of squares programming; uncertain nonlinear systems; LOCAL STABILITY ANALYSIS; LYAPUNOV FUNCTIONS; CONVEX COMPUTATION; SWITCHED SYSTEMS; ALGORITHM; REGIONS; SETS; STABILIZABILITY; OPTIMIZATION; SQUARES;
D O I
10.1109/TSMC.2020.2980673
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we investigate the inner estimations of the minimal domains of attraction (MDA) for uncertain nonlinear systems, whose uncertainties are modeled by parameters defined in a semialgebraic set. We begin from an initial inner estimation of MDA and then enlarge this initial inner estimation by iterative calculating common Lyapunov-like functions with a linear sum of squares programming-based approach. Afterwards, this enlarged inner estimation of MDA is further improved by iterative computations of parameter-dependent Lyapunov-like functions. Especially, we use a simple semialgebraic set, described by a polynomial level-set function, to under-approximate this improved estimation. In the end, our methods are implemented and tested on several uncertain examples with comparisons to existing methods in the literatures.
引用
收藏
页码:7776 / 7787
页数:12
相关论文
共 70 条
[1]   NUMERICAL DETERMINATION OF DOMAINS OF ATTRACTION FOR ELECTRICAL-POWER SYSTEMS USING THE METHOD OF ZUBOV [J].
ABUHASSAN, M ;
STOREY, C .
INTERNATIONAL JOURNAL OF CONTROL, 1981, 34 (02) :371-381
[2]   Non-monotonic Lyapunov Functions for Stability of Discrete Time Nonlinear and Switched Systems [J].
Ahmadi, Amir Ali ;
Parrilo, Pablo A. .
47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, :614-621
[3]  
Althoff D, 2015, IEEE INT C INT ROBOT, P3470, DOI 10.1109/IROS.2015.7353861
[4]  
[Anonymous], 1993, A Mathematical Introduction to Robotic Manipulation
[5]   Affine Characterizations of Minimal and Mode-Dependent Dwell-Times for Uncertain Linear Switched Systems [J].
Briat, Corentin ;
Seuret, Alexandre .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (05) :1304-1310
[6]   A generalization of Zubov's method to perturbed systems [J].
Camilli, F ;
Grüne, L ;
Wirth, F .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (02) :496-515
[7]   LMI-based computation of optimal quadratic Lyapunov functions for odd polynomial systems [J].
Chesi, G ;
Garulli, A ;
Tesi, A ;
Vicino, A .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2005, 15 (01) :35-49
[8]   Estimating the domain of attraction for uncertain polynomial systems [J].
Chesi, G .
AUTOMATICA, 2004, 40 (11) :1981-1986
[9]   Rational Lyapunov functions for estimating and controlling the robust domain of attraction [J].
Chesi, Graziano .
AUTOMATICA, 2013, 49 (04) :1051-1057
[10]  
Chesi G, 2011, LECT NOTES CONTR INF, V415, P3, DOI 10.1007/978-0-85729-959-8