Cycle transversals in bounded degree graphs

被引:0
作者
Groshaus, Marina [1 ]
Hell, Pavol [2 ]
Klein, Sulamita [3 ]
Nogueira, Loana Tito [4 ]
Protti, Fabio [4 ]
机构
[1] Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina
[2] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada
[3] Univ Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil
[4] Univ Fed Fluminense, BR-24220000 Niteroi, RJ, Brazil
关键词
approximation algorithms; cycle-transversals; transversals; COMPLEXITY;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this work we investigate the algorithmic complexity of computing a minimum C-k-transversal, i.e., a subset of vertices that intersects all the chordless cycles with k vertices of the input graph, for a fixed k >= 3. For graphs of maximum degree at most three, we prove that this problem is polynomial-time solvable when k <= 4, and NP-hard otherwise. For graphs of maximum degree at most four, we prove that this problem is NP-hard for any fixed k >= 3. We also discuss polynomial-time approximation algorithms for computing C-3-transversals in graphs of maximum degree at most four, based on a new decomposition theorem for such graphs that leads to useful reduction rules.
引用
收藏
页码:45 / 66
页数:22
相关论文
共 50 条
[1]   Bounded transversals in multipartite graphs [J].
Berke, Robert ;
Haxell, Penny ;
Szabo, Tibor .
JOURNAL OF GRAPH THEORY, 2012, 70 (03) :318-331
[2]   Cycle transversals in perfect graphs and cographs [J].
Brandstaedt, Andreas ;
Brito, Synara ;
Klein, Sulamita ;
Nogueira, Loana Tito ;
Protti, Fabio .
THEORETICAL COMPUTER SCIENCE, 2013, 469 :15-23
[3]   Star colouring of bounded degree graphs and regular graphs [J].
Shalu, M. A. ;
Antony, Cyriac .
DISCRETE MATHEMATICS, 2022, 345 (06)
[4]   Property testing in bounded degree graphs [J].
Goldreich, O ;
Ron, D .
ALGORITHMICA, 2002, 32 (02) :302-343
[5]   Tree spanners of bounded degree graphs [J].
Papoutsakis, Ioannis .
DISCRETE APPLIED MATHEMATICS, 2018, 236 :395-407
[6]   The Complexity of Star Colouring in Bounded Degree Graphs and Regular Graphs [J].
Shalu, M. A. ;
Antony, Cyriac .
ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2022, 2022, 13179 :78-90
[7]   The Planar Hajos Calculus for Bounded Degree Graphs [J].
Iwama, Kazuo ;
Seto, Kazuhisa ;
Tamaki, Suguru .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2010, E93A (06) :1000-1007
[8]   List packing number of bounded degree graphs [J].
Cambie, Stijn ;
van Batenburg, Wouter Cames ;
Davies, Ewan ;
Kang, Ross J. .
COMBINATORICS PROBABILITY AND COMPUTING, 2024, 33 (06) :807-828
[9]   Frozen (Δ+1)-colourings of bounded degree graphs [J].
Bonamy, Marthe ;
Bousquet, Nicolas ;
Perarnau, Guillem .
COMBINATORICS PROBABILITY AND COMPUTING, 2021, 30 (03) :330-343
[10]   The complexity of H-colouring of bounded degree graphs [J].
Galluccio, A ;
Hell, P ;
Nesetril, J .
DISCRETE MATHEMATICS, 2000, 222 (1-3) :101-109