The evolution of inefficiency in a simulated stag hunt

被引:2
作者
Bearden, JN [1 ]
机构
[1] Univ N Carolina, Dept Psychol, Chapel Hill, NC 27514 USA
来源
BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS | 2001年 / 33卷 / 02期
关键词
D O I
10.3758/BF03195357
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
We used genetic algorithms to evolve populations of reinforcement learning (Q-learning) agents to play a repeated two-player symmetric coordination game under different risk conditions and found that evolution steered our simulated populations to the Pareto inefficient equilibrium under high-risk conditions and to the Pareto efficient equilibrium under low-risk conditions. Greater degrees of forgiveness and temporal discounting of future returns emerged in populations playing the low-risk game. Results demonstrate the utility of simulation to evolutionary psychology.
引用
收藏
页码:124 / 129
页数:6
相关论文
共 33 条
[1]  
Atkinson R. C., 1965, INTRO MATH LEARNING
[2]   THE EVOLUTION OF COOPERATION [J].
AXELROD, R ;
HAMILTON, WD .
SCIENCE, 1981, 211 (4489) :1390-1396
[3]  
Axelrod R., 1987, GENETIC ALGORITHMS S, V1, P1
[4]  
BATTALIO R, 2000, UNPUB OPTIMIZATION I
[5]  
Bush RR, 1955, Stochastic models for learning, DOI DOI 10.1037/14496-000
[6]   GLOBAL GAMES AND EQUILIBRIUM SELECTION [J].
CARLSSON, H ;
VANDAMME, E .
ECONOMETRICA, 1993, 61 (05) :989-1018
[7]  
COLLINS RJ, 1992, PRACTICE AUTONOMOUS, P327
[8]  
Cosmides L., 1987, LATEST BEST ESSAYS E
[9]  
Dawkins R., 1976, SELFISH GENE
[10]  
De Jong KA., 1975, An analysis of the behavior of a class of genetic adaptive systems