Integrating diverse data for structure determination of macromolecular assemblies

被引:160
作者
Alber, Frank [1 ,2 ,3 ]
Foerster, Friedrich [1 ,2 ,3 ]
Korkin, Dmitry [1 ,2 ,3 ,5 ,6 ]
Topf, Maya [4 ]
Sali, Andrej [1 ,2 ,3 ]
机构
[1] Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Calif Inst Quantitat Biosci, San Francisco, CA 94158 USA
[4] Univ London, Birkbeck Coll, Sch Crystallog, London WC1E 7HX, England
[5] Univ Missouri, Inst Informat, Columbia, MO 65211 USA
[6] Univ Missouri, Dept Comp Sci, Columbia, MO 65211 USA
基金
英国医学研究理事会;
关键词
architecture; assembly; complex; configuration; hybrid methods; restraints;
D O I
10.1146/annurev.biochem.77.060407.135530
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To understand the cell, we need to determine the macromolecular assembly structures, which may consist of tens to hundreds of components. First, we review the varied experimental data that characterize the assemblies at several levels of resolution. We then describe computational methods for generating the structures using these data. To maximize completeness, resolution, accuracy, precision, and efficiency of the structure determination, a computational approach is required that uses spatial information from a variety of experimental methods. We propose such an approach, defined by its three main components: a hierarchical representation of the assembly, a scoring function consisting of spatial restraints derived from experimental data, and an optimization method that generates structures consistent with the data. This approach is illustrated by determining the configuration of the 456 proteins in the nuclear pore complex (NPC) from baker's yeast. With these tools, we are poised to integrate structural information gathered at multiple levels of the biological hierarchy-from atoms to cells-into a common framework.
引用
收藏
页码:443 / 477
页数:35
相关论文
共 189 条
[1]   Proteomics: The society of proteins [J].
Abbott, A .
NATURE, 2002, 417 (6892) :894-896
[2]   Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement [J].
Adams, PD ;
Pannu, NS ;
Read, RJ ;
Brunger, AT .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1999, 55 :181-190
[3]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[4]   Cryo-electron microscopy of vitreous sections of native biological cells and tissues [J].
Al-Amoudi, A ;
Norlen, LPO ;
Dubochet, J .
JOURNAL OF STRUCTURAL BIOLOGY, 2004, 148 (01) :131-135
[5]   Structural characterization of assemblies from overall shape and subcomplex compositions [J].
Alber, F ;
Kim, MF ;
Sali, A .
STRUCTURE, 2005, 13 (03) :435-445
[6]  
Alber F, 2004, NUCL ACID M, V15, P73
[7]   The molecular architecture of the nuclear pore complex [J].
Alber, Frank ;
Dokudovskaya, Svetlana ;
Veenhoff, Liesbeth M. ;
Zhang, Wenzhu ;
Kipper, Julia ;
Devos, Damien ;
Suprapto, Adisetyantari ;
Karni-Schmidt, Orit ;
Williams, Rosemary ;
Chait, Brian T. ;
Sali, Andrej ;
Rout, Michael P. .
NATURE, 2007, 450 (7170) :695-701
[8]   Determining the architectures of macromolecular assemblies [J].
Alber, Frank ;
Dokudovskaya, Svetlana ;
Veenhoff, Liesbeth M. ;
Zhang, Wenzhu ;
Kipper, Julia ;
Devos, Damien ;
Suprapto, Adisetyantari ;
Karni-Schmidt, Orit ;
Williams, Rosemary ;
Chait, Brian T. ;
Rout, Michael P. ;
Sali, Andrej .
NATURE, 2007, 450 (7170) :683-694
[9]   The cell as a collection of protein machines: Preparing the next generation of molecular biologists [J].
Alberts, B .
CELL, 1998, 92 (03) :291-294
[10]   Structure-based assembly of protein complexes in yeast [J].
Aloy, P ;
Böttcher, B ;
Ceulemans, H ;
Leutwein, C ;
Mellwig, C ;
Fischer, S ;
Gavin, AC ;
Bork, P ;
Superti-Furga, G ;
Serrano, L ;
Russell, RB .
SCIENCE, 2004, 303 (5666) :2026-2029