Dynamic modelling of an activated carbon-methanol adsorption refrigeration tube with considerations of interfacial convection and transient pressure process
被引:30
作者:
Zhao, Yongling
论文数: 0引用数: 0
h-index: 0
机构:
Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, AustraliaUniv Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
Zhao, Yongling
[1
]
论文数: 引用数:
h-index:
机构:
Hu, Eric
[1
]
Blazewicz, Antoni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, AustraliaUniv Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
Blazewicz, Antoni
[1
]
机构:
[1] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
In the present study, a dynamic model of the adsorption refrigeration cycle was established with the consideration of interfacial convective heat transfer within adsorbent particles. In the model, a concept and mathematical definition of a transient pressure process at the beginning of the traditionally considered isobaric adsorption process are introduced. The model was solved numerically and experimentally verified in terms of the adsorbent/adsorbate temperature development, system pressure variation, and dynamic adsorption/desorption amount. A temperature jump at the beginning of the adsorption process was experimentally identified and was successfully predicted in the numerical simulation with the introduction of a transient pressure process. Numerical results simulated with the newly introduced transient pressure process and the traditional constant pressure process were compared. The comparison shows that the introduced transient pressure process can significantly improve the accuracy of the presented model. In addition, a notable adsorbate migration phenomenon was discussed according to the abnormal temperature development in the processes of isosteric heating and cooling. The present model can be used for a valve-controlled and long cycle-time based ART and other systems with similar operating procedures. (C) 2012 Elsevier Ltd. All rights reserved.
机构:
Natl Res Ctr, Solar Energy Dept, Dokki 12622, Giza, EgyptNatl Res Ctr, Solar Energy Dept, Dokki 12622, Giza, Egypt
Helmy, M.
El-Ghetany, H. H.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Ctr, Solar Energy Dept, Dokki 12622, Giza, EgyptNatl Res Ctr, Solar Energy Dept, Dokki 12622, Giza, Egypt
El-Ghetany, H. H.
Ahmed, Mohamed H.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Ctr, Solar Energy Dept, Dokki 12622, Giza, EgyptNatl Res Ctr, Solar Energy Dept, Dokki 12622, Giza, Egypt
Ahmed, Mohamed H.
Mosalam, Heba
论文数: 0引用数: 0
h-index: 0
机构:
Heliopolis Univ Sustainable Dev, Electromech Dept, Cairo, EgyptNatl Res Ctr, Solar Energy Dept, Dokki 12622, Giza, Egypt
Mosalam, Heba
Aly, Wael I. A.
论文数: 0引用数: 0
h-index: 0
机构:
Helwan Univ, Fac Technol & Educ, Dept Refrigerat & Air Conditioning Technol, Helwan, EgyptNatl Res Ctr, Solar Energy Dept, Dokki 12622, Giza, Egypt