Motivic classes of moduli of Higgs bundles and moduli of bundles with connections

被引:9
|
作者
Fedorov, Roman [1 ]
Soibelman, Alexander [2 ]
Soibelman, Yan [3 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ South Calif, Dept Math, Los Angeles, CA 90089 USA
[3] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
关键词
VECTOR BUNDLES; FAMILIES; STACKS;
D O I
10.4310/CNTP.2018.v12.n4.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a smooth projective curve over a field of characteristic zero. We calculate the motivic class of the moduli stack of semistable Higgs bundles on X. We also calculate the motivic class of the moduli stack of vector bundles with connections by showing that it is equal to the class of the stack of semistable Higgs bundles of the same rank and degree zero. We follow the strategy of Mozgovoy and Schiffmann for counting Higgs bundles over finite fields. The main new ingredient is a motivic version of a theorem of Harder about Eisenstein series claiming that all vector bundles have approximately the same motivic class of Borel reductions as the degree of Borel reduction tends to -infinity.
引用
收藏
页码:687 / 766
页数:80
相关论文
共 50 条
  • [1] Stratifications on the moduli space of Higgs bundles
    Gothen, Peter B.
    Zuniga-Rojas, Ronald A.
    PORTUGALIAE MATHEMATICA, 2017, 74 (02) : 127 - 148
  • [2] On the motives of moduli of chains and Higgs bundles
    Garcia-Prada, Oscar
    Heinloth, Jochen
    Schmitt, Alexander
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (12) : 2617 - 2668
  • [3] Lie algebroid connections, twisted Higgs bundles and motives of moduli spaces
    Alfaya, David
    Oliveira, Andre
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 201
  • [4] A vanishing theorem for co-Higgs bundles on the moduli space of bundles
    Biswas, Indranil
    Rayan, Steven
    GEOMETRIAE DEDICATA, 2018, 193 (01) : 145 - 154
  • [5] Moduli of parabolic Higgs bundles and Atiyah algebroids
    Logares, Marina
    Martens, Johan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 649 : 89 - 116
  • [6] Picard group of moduli of parabolic Higgs bundles
    Roy, Sumit
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (02) : 724 - 728
  • [7] A Torelli theorem for the moduli space of parabolic Higgs bundles
    Gomez, Tomas L.
    Logares, Marina
    ADVANCES IN GEOMETRY, 2011, 11 (03) : 429 - 444
  • [8] Torelli theorems for moduli of logarithmic connections and parabolic bundles
    Sebastian, Ronnie
    MANUSCRIPTA MATHEMATICA, 2011, 136 (1-2) : 249 - 271
  • [9] Integrable Systems and Torelli Theorems for the Moduli Spaces of Parabolic Bundles and Parabolic Higgs Bundles
    Biswas, Indranil
    Gomez, Tomas L.
    Logares, Marina
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (03): : 504 - 520
  • [10] Torelli theorem for the moduli space of symplectic parabolic Higgs bundles
    Roy, Sumit
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 168