Optimal Stabilization Control for Discrete-Time Mean-Field Stochastic Systems

被引:45
作者
Zhang, Huanshui [1 ]
Qi, Qingyuan [1 ]
Fu, Minyue [2 ,3 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
[3] Guangdong Univ Technol, Sch Automat, Guangdong Key Lab IoT Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Algebraic Riccati equation (ARE); mean-field LQ (linear quadratic) control; optimal controller; stabilizing controller; QUADRATIC OPTIMAL-CONTROL; DIFFERENTIAL-EQUATIONS; LIMIT;
D O I
10.1109/TAC.2018.2813006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper will investigate the stabilization and optimal linear quadratic (LQ) control problems for infinite horizon discrete-time mean-field systems. Unlike the previous works, for the first time, the necessary and sufficient stabilization conditions are explored under mild conditions, and the optimal LQ controller for infinite horizon is designed with a coupled algebraic Riccati equation (ARE). More specifically, we show that under the exact detectability (exact observability) assumption, the mean-field system is stabilizable in the mean square sense with the optimal controller if and only if a coupled ARE has a unique positive semidefinite (positive definite) solution. The presented results are parallel to the classical results for the standard LQ control.
引用
收藏
页码:1125 / 1136
页数:12
相关论文
共 31 条
[1]  
Abou-Kandil H., 2003, SYS CON FDN
[2]  
[Anonymous], 2007, OPTIMAL CONTROL LINE
[3]   A General Stochastic Maximum Principle for SDEs of Mean-field Type [J].
Buckdahn, Rainer ;
Djehiche, Boualem ;
Li, Juan .
APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 64 (02) :197-216
[4]   MEAN-FIELD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS: A LIMIT APPROACH [J].
Buckdahn, Rainer ;
Djehiche, Boualem ;
Li, Juan ;
Peng, Shige .
ANNALS OF PROBABILITY, 2009, 37 (04) :1524-1565
[5]   Mean field forward-backward stochastic differential equations [J].
Carmona, Rene ;
Delarue, Francois .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 :1-15
[6]  
Dawson D. A., 1987, Stochastics, V20, P247, DOI 10.1080/17442508708833446
[8]  
El Bouhtouri A, 1999, INT J ROBUST NONLIN, V9, P923, DOI 10.1002/(SICI)1099-1239(199911)9:13<923::AID-RNC444>3.0.CO
[9]  
2-2
[10]   Discrete time mean-field stochastic linear-quadratic optimal control problems [J].
Elliott, Robert ;
Li, Xun ;
Ni, Yuan-Hua .
AUTOMATICA, 2013, 49 (11) :3222-3233