Modeling and optimization of the glutamic acid fermentation process using computational intelligence techniques

被引:1
作者
Guan, Shouping [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Neural networks with random weights; Glutamic acid fermentation; Multi-objective optimization; Differential evolutionary algorithm; PARTICLE SWARM OPTIMIZATION; DIFFERENTIAL EVOLUTION; GENETIC ALGORITHM; BATCH;
D O I
10.1016/j.neucom.2014.10.094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a framework for modeling and optimizing the glutamic acid fermentation process using computational intelligence techniques. Considering the special characteristics of such an industrial process, we propose a two-phase optimization strategy to maximize the conversion rate and product concentration of the glutamic acid. Neural network ensembles and an improved Differential Evolutionary Algorithm (DEA) with a non-inferior sorting scheme and niche technology are employed for problem solving. This work provides an approach for design of a model-free optimal control system for the fed-batch fermentation process. Experimental results are promising and demonstrate the applicability of the proposed modeling and optimization techniques for real world applications. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:403 / 411
页数:9
相关论文
共 50 条
  • [21] Optimization of machining parameters using artificial Intelligence techniques
    Muthuram, N.
    Frank, F. Christo
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 8097 - 8102
  • [22] Modeling and optimization control of vitamin B12 fermentation process
    Gao, XJ
    Wang, P
    Sun, CZ
    Zhang, YT
    Zhang, HQ
    Fan, QW
    ICEMI 2005: Conference Proceedings of the Seventh International Conference on Electronic Measurement & Instruments, Vol 4, 2005, : 630 - 633
  • [23] Blood Pressure Modeling using Statistical and Computational Intelligence Approaches
    Bhaduri, Aranya
    Bhaduri, Anwesha
    Bhaduri, Antariksha
    Mohapatra, P. K.
    2009 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE, VOLS 1-3, 2009, : 1026 - 1030
  • [24] Hybrid bio-Inspired computational intelligence techniques for solving power system optimization problems: A comprehensive survey
    Rahman, Imran
    Mohamad-Saleh, Junita
    APPLIED SOFT COMPUTING, 2018, 69 : 72 - 130
  • [25] Computational Investigation of Modeling Coupled Optimization Techniques for MCSRM Driving EV
    Siddique, Farha
    Shastri, Sharankumar
    Singh, Bhim
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (03) : 1793 - 1803
  • [26] Optimization of turning process using artificial intelligence technology
    Rasool Mokhtari Homami
    Alireza Fadaei Tehrani
    Hamed Mirzadeh
    Behrooz Movahedi
    Farhad Azimifar
    The International Journal of Advanced Manufacturing Technology, 2014, 70 : 1205 - 1217
  • [27] Parameters Optimization of Electrical Discharge Machining Process Using Swarm Intelligence: A Review
    Chen, Yanyan
    Hu, Shunchang
    Li, Ansheng
    Cao, Yang
    Zhao, Yangjing
    Ming, Wuyi
    METALS, 2023, 13 (05)
  • [28] Optimization of turning process using artificial intelligence technology
    Homami, Rasool Mokhtari
    Tehrani, Alireza Fadaei
    Mirzadeh, Hamed
    Movahedi, Behrooz
    Azimifar, Farhad
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 70 (5-8) : 1205 - 1217
  • [29] Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques
    Zhen-Ming Lu
    Jian-Yong Lei
    Hong-Yu Xu
    Jing-Song Shi
    Zheng-Hong Xu
    Applied Microbiology and Biotechnology, 2011, 92 : 371 - 379
  • [30] Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques
    Lu, Zhen-Ming
    Lei, Jian-Yong
    Xu, Hong-Yu
    Shi, Jing-Song
    Xu, Zheng-Hong
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 92 (02) : 371 - 379