Boundary layer flow of nanofluid over an exponentially stretching surface

被引:200
作者
Nadeem, Sohail [1 ]
Lee, Changhoon [2 ]
机构
[1] Quaid I Azam Univ, Dept Math, Islamabad 45320, Pakistan
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
来源
NANOSCALE RESEARCH LETTERS | 2012年 / 7卷
基金
新加坡国家研究基金会;
关键词
nanofluid; porous stretching surface; boundary layer flow; series solutions; exponential stretching; HOMOTOPY ANALYSIS METHOD; ELECTRICALLY CONDUCTING FLUID; HEAT-TRANSFER; MASS-TRANSFER; SERIES SOLUTIONS; MHD FLOW; EQUATIONS; SHEET; DISSIPATION; 2ND-GRADE;
D O I
10.1186/1556-276X-7-94
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter alpha, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 39 条
[1]   Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method [J].
Abbasbandy, S. .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (12) :2706-2714
[2]   Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method [J].
Abbasbandy, S. .
CHEMICAL ENGINEERING JOURNAL, 2008, 136 (2-3) :144-150
[3]   Newton-homotopy analysis method for nonlinear equations [J].
Abbasbandy, S. ;
Tan, Y. ;
Liao, S. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (02) :1794-1800
[4]   Homotopy analysis method for heat radiation equations [J].
Abbasbandy, S. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2007, 34 (03) :380-387
[5]   The application of homotopy analysis method to nonlinear equations arising in heat transfer [J].
Abbasbandy, S. .
PHYSICS LETTERS A, 2006, 360 (01) :109-113
[6]   HEAT-TRANSFER FROM A STRETCHING SURFACE [J].
AFZAL, N .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1993, 36 (04) :1128-1131
[7]   Adaptation of homotopy analysis method for the numeric-analytic solution of Chen system [J].
Alomari, A. K. ;
Noorani, M. S. M. ;
Nazar, R. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :2336-2346
[8]   Boundary-layer flow of nanofluids over a moving surface in a flowing fluid [J].
Bachok, Norfifah ;
Ishak, Anuar ;
Pop, Ioan .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (09) :1663-1668
[9]   Modified homotopy analysis method for solving systems of second-order BVPs [J].
Bataineh, A. Sami ;
Noorani, M. S. M. ;
Hashim, I. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (02) :430-442
[10]   On a new reliable modification of homotopy analysis method [J].
Bataineh, A. Sami ;
Noorani, M. S. M. ;
Hashim, I. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (02) :409-423