Sine-Gordon theory in a semi-strip

被引:6
作者
Sakhnovich, Alexander [1 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Sine-Gordon equation; Complex sine-Gordon equation; Initial-boundary value problem; Skew-self-adjoint Dirac system; Weyl function; Inverse spectral transform; BOUNDARY-VALUE-PROBLEMS; COMPLEX SINE; INVERSE SCATTERING; SPECTRAL PROBLEM; EQUATIONS; EXISTENCE; EVOLUTION; DISCRETE; GOURSAT; SOLITON;
D O I
10.1016/j.na.2011.09.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Initial-boundary value problems for sine-Gordon and complex sine-Gordon equations in a semi-strip are treated. The evolution of the Weyl function and a uniqueness result are obtained for the complex sine-Gordon equation. The evolution of the Weyl function as well as an existence result and a procedure to recover solution are given for the sine-Gordon equation. It is shown that for a wide class of examples the solutions of the sine-Gordon equation are unbounded in the quarter-plane. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:964 / 974
页数:11
相关论文
共 60 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   METHOD FOR SOLVING SINE-GORDON EQUATION [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 30 (25) :1262-1264
[3]  
Ablowitz MJ, 1981, SIAM STUDIES APPL MA, V4
[4]   Krein Systems and Canonical Systems on a Finite Interval: Accelerants with a Jump Discontinuity at the Origin and Continuous Potentials [J].
Alpay, D. ;
Gohberg, I. ;
Kaashoek, M. A. ;
Lerer, L. ;
Sakhnovich, A. L. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 68 (01) :115-150
[5]  
[Anonymous], OPER THEORY ADV APPL
[6]  
[Anonymous], 1986, Hamiltonian Methods in the Theory of Solitons
[7]   CONSERVATION-LAWS AND GEOMETRY OF PERTURBED COSET MODELS [J].
BAKAS, I .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (19) :3443-3472
[8]   Exact vortex solutions of the complex sine-Gordon theory on the plane [J].
Barashenkov, IV ;
Pelinovsky, DE .
PHYSICS LETTERS B, 1998, 436 (1-2) :117-124
[9]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[10]  
Beals R, 1998, J DIFFER GEOM, P467