Low-density lipoprotein particles in atherosclerosis

被引:74
作者
Qiao, Ya-Nan [1 ]
Zou, Yan-Li [1 ]
Guo, Shou-Dong [1 ]
机构
[1] Weifang Med Univ, Inst Lipid Metab & Atherosclerosis, Innovat Drug Res Ctr, Sch Pharm, Weifang, Peoples R China
基金
中国国家自然科学基金;
关键词
LDL particle; PCSK9; atherosclerosis; cardiovascular disease; inhibitor; CORONARY-HEART-DISEASE; LDL CHOLESTEROL; CARDIOVASCULAR RISK; CLINICAL-SIGNIFICANCE; GEL-ELECTROPHORESIS; MONOCLONAL-ANTIBODY; PCSK9; INHIBITORS; STATIN THERAPY; ION MOBILITY; SIZE;
D O I
10.3389/fphys.2022.931931
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Among the diseases causing human death, cardiovascular disease (CVD) remains number one according to the World Health Organization report in 2021. It is known that atherosclerosis is the pathological basis of CVD. Low-density lipoprotein (LDL) plays a pivotal role in the initiation and progression of atherosclerotic CVD (ASCVD). LDL cholesterol (LDL-C) is the traditional biological marker of LDL. However, large numbers of patients who have achieved the recommended LDL-C goals still have ASCVD risk. In multiple prospective studies, LDL particle (LDL- P) is reported to be more accurate in predicting CVD risk than LDL-C. LDL-Ps differ in size, density and chemical composition. Numerous clinical studies have proved that the atherogenic mechanisms of LDL-Ps are determined not only by LDL number and size but also by LDL modifications. Of note, small dense LDL (sdLDL) particles possess stronger atherogenic ability compared with large and intermediate LDL subfractions. Besides, oxidized LDL (ox-LDL) is another risk factor in atherosclerosis. Among the traditional lipid-lowering drugs, statins induce dramatic reductions in LDL-C and LDL-P to a lesser extend. Recently, proprotein convertase subtilsin/kexin type 9 inhibitors (PCSK9i) have been demonstrated to be effective in lowering the levels of LDL-C, LDL-P, as well as CVD events. In this article, we will make a short review of LDL metabolism, discuss the discordance between LDL-C and LDL-P, outline the atherogenic mechanisms of action of LDL by focusing on sdLDL and ox-LDL, summarize the methods used for measurement of LDL subclasses, and conclude the advances in LDL-lowering therapies using statins and PCSK9i.
引用
收藏
页数:15
相关论文
共 130 条
[11]   Intrahepatic fat accumulation and alterations in lipoprotein composition in obese adolescents [J].
Cali, Anna M. G. ;
Zern, Tosca L. ;
Taksali, Sara E. ;
De Oliveira, Ana Mayra ;
Dufour, Sylvie ;
Otvos, James D. ;
Caprio, Sonia .
DIABETES CARE, 2007, 30 (12) :3093-3098
[12]   Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) Beyond Lipids: The Role in Oxidative Stress and Thrombosis [J].
Cammisotto, Vittoria ;
Baratta, Francesco ;
Simeone, Paola G. ;
Barale, Cristina ;
Lupia, Enrico ;
Galardo, Gioacchino ;
Santilli, Francesca ;
Russo, Isabella ;
Pignatelli, Pasquale .
ANTIOXIDANTS, 2022, 11 (03)
[13]   Proprotein Convertase Subtilisin Kexin Type 9 Inhibitors Reduce Platelet Activation Modulating ox-LDL Pathways [J].
Cammisotto, Vittoria ;
Baratta, Francesco ;
Castellani, Valentina ;
Bartimoccia, Simona ;
Nocella, Cristina ;
D'Erasmo, Laura ;
Cocomello, Nicholas ;
Barale, Cristina ;
Scicali, Roberto ;
Di Pino, Antonino ;
Piro, Salvatore ;
Del Ben, Maria ;
Arca, Marcello ;
Russo, Isabella ;
Purrello, Francesco ;
Carnevale, Roberto ;
Violi, Francesco ;
Pastori, Daniele ;
Pignatelli, Pasquale .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (13)
[14]   PCSK9 Regulates Nox2-Mediated Platelet Activation via CD36 Receptor in Patients with Atrial Fibrillation [J].
Cammisotto, Vittoria ;
Pastori, Daniele ;
Nocella, Cristina ;
Bartimoccia, Simona ;
Castellani, Valentina ;
Marchese, Cinzia ;
Scavalli, Antonio Sili ;
Ettorre, Evaristo ;
Viceconte, Nicola ;
Violi, Francesco ;
Pignatelli, Pasquale ;
Carnevale, Roberto .
ANTIOXIDANTS, 2020, 9 (04)
[15]   Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes [J].
Cannon, Christopher P. ;
Blazing, Michael A. ;
Giugliano, Robert P. ;
McCagg, Amy ;
White, Jennifer A. ;
Theroux, Pierre ;
Darius, Harald ;
Lewis, Basil S. ;
Ophuis, Ton Oude ;
Jukema, J. Wouter ;
De Ferrari, Gaetano M. ;
Ruzyllo, Witold ;
De Lucca, Paul ;
Im, KyungAh ;
Bohula, Erin A. ;
Reist, Craig ;
Wiviott, Stephen D. ;
Tershakovec, Andrew M. ;
Musliner, Thomas A. ;
Braunwald, Eugene ;
Califf, Robert M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (25) :2387-2397
[16]   Atherogenic lipoprotein particles in atherosclerosis [J].
Carmena, R ;
Duriez, P ;
Fruchart, JC .
CIRCULATION, 2004, 109 (23) :2-7
[17]   Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis [J].
Caulfield, Michael P. ;
Li, Shuguang ;
Lee, Gloria ;
Blanche, Patricia J. ;
Salarneh, Wael A. ;
Benner, W. Henry ;
Reitz, Richard E. ;
Krauss, Ronald M. .
CLINICAL CHEMISTRY, 2008, 54 (08) :1307-1316
[18]   Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test [J].
Centelles, Sandra Monsonis ;
Hoefsloot, Huub C. J. ;
Khakimov, Bekzod ;
Ebrahimi, Parvaneh ;
Lind, Mads V. ;
Kristensen, Mette ;
de Roo, Niels ;
Jacobs, Doris M. ;
van Duynhoven, John ;
Gannet, Claire ;
Fang, Fang ;
Humpfer, Eberhard ;
Schaefer, Hartmut ;
Spraul, Manfred ;
Engelsen, Soren B. ;
Smilde, Age K. .
ANALYTICAL CHEMISTRY, 2017, 89 (15) :8004-8012
[19]  
Chaudhary R, 2017, WORLD J CARDIOL, V9, P76, DOI 10.4330/wjc.v9.i2.76
[20]   The oxidative modification hypothesis of atherogenesis: An overview [J].
Chisolm, GM ;
Steinberg, D .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (12) :1815-1826