Approximate Stabilization of One-dimensional Schrodinger Equations in Inhomogeneous Media

被引:1
|
作者
Zu, Jian [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
关键词
Lyapunov stabilization; LaSalle invariance principle; Bilinear x-dependent; Schrodinger equation; Inhomogeneous media; PERIODIC-SOLUTIONS; LYAPUNOV CONTROL; WAVE-EQUATION; CONTROLLABILITY;
D O I
10.1007/s10957-011-9949-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present how to control the bilinear 1D infinite-dimensional Schrodinger equations in inhomogeneous media (with -dependent coefficients), getting the approximate stabilization around ground state. Our arguments are based on constructing a Lyapunov function and a strategy similar to LaSalle invariance principle.
引用
收藏
页码:758 / 768
页数:11
相关论文
共 50 条
  • [21] Smooth solution for one-dimensional inhomogeneous Heisenberg chain equations
    Ding, SJ
    Guo, BL
    Su, FQ
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 1171 - 1184
  • [22] Analytic solution to field distribution in one-dimensional inhomogeneous media
    Gric, Tatjana
    Cada, Michael
    OPTICS COMMUNICATIONS, 2014, 322 : 183 - 187
  • [23] TRAFFIC FLOW PROBLEMS IN ONE-DIMENSIONAL INHOMOGENEOUS-MEDIA
    CHUNG, KH
    HUI, PM
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (12) : 4338 - 4341
  • [24] INVERSE SCATTERING METHOD FOR ONE-DIMENSIONAL INHOMOGENEOUS LAYERED MEDIA
    UNO, T
    ADACHI, S
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1987, 35 (12) : 1456 - 1466
  • [25] ONE-DIMENSIONAL ELASTIC-WAVES IN INHOMOGENEOUS-MEDIA
    SCHREYER, HL
    JOURNAL OF THE ENGINEERING MECHANICS DIVISION-ASCE, 1977, 103 (05): : 979 - 990
  • [26] An Inverse Electromagnetic Scattering Method for One-Dimensional Inhomogeneous Media
    Lin Zhi-Wei
    Xu Xin
    Zhang Xiao-Juan
    Fang Guang-You
    CHINESE PHYSICS LETTERS, 2011, 28 (01)
  • [27] EXACT AND APPROXIMATE CONTROLLABILITY OF COUPLED ONE-DIMENSIONAL HYPERBOLIC EQUATIONS
    Bennour, Abdelaziz
    Khodja, Farid Ammar
    Teniou, Djamel
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2017, 6 (04): : 487 - 516
  • [28] Factorization of the one-dimensional wave equations for dispersive media
    Barkovsky, L
    Furs, A
    OPTICS OF CRYSTALS, 2001, 4358 : 142 - 147
  • [29] ONE-DIMENSIONAL WAVE-EQUATIONS IN DISORDERED MEDIA
    DELYON, F
    KUNZ, H
    SOUILLARD, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (01): : 25 - 42
  • [30] Approximate Solution of the One-Dimensional Problem of the Theory of Elasticity for an Inhomogeneous Solid Cylinder
    Tokova L.P.
    Yasinskyy А.V.
    Journal of Mathematical Sciences, 2018, 228 (2) : 133 - 141