From Gaussian scale-space to B-spline scale-space

被引:0
|
作者
Wang, YP [1 ]
Lee, SL [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Wavelets Strateg Res Programme, Singapore, Singapore
关键词
D O I
10.1109/ICASSP.1999.757582
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The Gaussian kernel has long been used in the classical multiscale analysis. The purpose of the paper is to propose the uniform B-spline as an alternative for the visual modeling. A general framework for various scale-space representations is formulated using the B-spline approach. In particular, the evolution of the wavelet models can be well understood from such an approach. Most of the wavelet representations can be factored into B-spline bases and hence can be implemented efficiently using the spline technique. Besides, it is shown that the B-spline scale-space representations not only inherit most of the properties of the Gaussian scale-space but also have many advantages with respect to the efficiency, compactness and parallel structure.
引用
收藏
页码:3441 / 3444
页数:4
相关论文
共 50 条
  • [1] B-spline scale-space of spline curves and surfaces
    Kee, C. Y.
    Lee, S. L.
    COMPUTER-AIDED DESIGN, 2012, 44 (04) : 275 - 288
  • [2] Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
    Tony Lindeberg
    Journal of Mathematical Imaging and Vision, 2011, 40 : 36 - 81
  • [3] Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
    Lindeberg, Tony
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) : 36 - 81
  • [4] On the Gaussian scale-space
    Iijima, T
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (07) : 1162 - 1164
  • [5] The morphological equivalent of Gaussian scale-space
    vandenBoomgaard, R
    Dorst, L
    GAUSSIAN SCALE-SPACE THEORY, 1997, 8 : 203 - 220
  • [6] On the history of Gaussian scale-space axiomatics
    Weickert, J
    Ishikawa, S
    Imiya, A
    GAUSSIAN SCALE-SPACE THEORY, 1997, 8 : 45 - 59
  • [7] Neural Gaussian Scale-Space Fields
    Mujkanovic, Felix
    Nsampi, Ntumba Elie
    Theobalt, Christian
    Seidel, Hans-Peter
    Leimkuehler, Thomas
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (04):
  • [8] Computing an Exact Gaussian Scale-Space
    Rey-Otero, Ives
    Delbracio, Mauricio
    IMAGE PROCESSING ON LINE, 2016, 6 : 8 - 26
  • [9] UNIQUENESS OF THE GAUSSIAN KERNEL FOR SCALE-SPACE FILTERING
    BABAUD, J
    WITKIN, AP
    BAUDIN, M
    DUDA, RO
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (01) : 26 - 33
  • [10] Linear scale-space
    Florack, L.M.J.
    Romeny, Haar
    Koenderink, J.J.
    Viergever, M.A.
    Journal of Mathematical Imaging and Vision, 1994, 4 (04) : 325 - 351