Well-posedness and Gevrey analyticity of the generalized Keller-Segel system in critical Besov spaces

被引:14
作者
Zhao, Jihong [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Inst Appl Math, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Keller-Segel system; Chemotaxis model; Well-posedness; Gevrey analyticity; Decay; NAVIER-STOKES EQUATIONS; DRIFT-DIFFUSION SYSTEM; RADIALLY SYMMETRIC-SOLUTIONS; ILL-POSEDNESS; CHEMOTAXIS MODEL; CAUCHY-PROBLEM; REGULARITY; AGGREGATION; SINGULARITIES; 8-PI-PROBLEM;
D O I
10.1007/s10231-017-0691-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Cauchy problem for the generalized Keller-Segel system with the cell diffusion being ruled by fractional diffusion: {partial derivative(t)u + Lambda(alpha)u + del center dot (u del psi) = 0 in R-n x (o, infinity), -Delta psi = u in R-n x (0, infinity) u(x, 0) = u(0) (x) in R-n. In the case 1 < alpha <= 2, we prove local well-posedness for any initial data and global well-posedness for small initial data in critical Besov spaces (B)over dot(p,q) (-alpha+n/p) (R-n) with 1 <= p < infinity, 1 <= q <= infinity , and analyticity of solutions for initial data u(0) is an element of(B)over dot(p,q) (-alpha+n/p) (R-n) with 1 < p < infinity,1 <= q <= infinity. Moreover the global existence and analyticity of solutions with small initial data in critical Besov spaces (B)over dot(infinity,1)(-alpha) (R-n) is also established. In the limit case alpha = 1, we prove global well-posedness for small initial data in critical Besov spaces (B)over dot(p,1) (-1+n/p) (R-n) with 1 <= p < infinity and (B)over dot(infinity,1)(-1) (R-n) and show analyticity of solutions for small initial data in (B)over dot(p,1) (-1+n/p) (R-n) with 1 < p < 8 and (B)over dot(infinity,1)(-1) (R-n), respectively.
引用
收藏
页码:521 / 548
页数:28
相关论文
共 57 条
[1]  
Bae H., ARXIV13101624V1
[2]   Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces [J].
Bae, Hantaek ;
Biswas, Animikh ;
Tadmor, Eitan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :963-991
[3]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[4]  
Biler P, 2006, TOPOL METHOD NONL AN, V27, P133
[5]   Global regular and singular solutions for a model of gravitating particles [J].
Biler, P ;
Cannone, M ;
Guerra, IA ;
Karch, G .
MATHEMATISCHE ANNALEN, 2004, 330 (04) :693-708
[6]  
Biler P., 1994, Colloq. Math., V67, P297
[7]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[8]   The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane [J].
Biler, Piotr ;
Karch, Grzegorz ;
Laurencot, Philippe ;
Nadzieja, Tadeusz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (13) :1563-1583
[9]   Optimal criteria for blowup of radial and N-symmetric solutions of chemotaxis systems [J].
Biler, Piotr ;
Karch, Grzegorz ;
Zienkiewicz, Jacek .
NONLINEARITY, 2015, 28 (12) :4369-4387
[10]   Blowup of solutions to generalized Keller-Segel model [J].
Biler, Piotr ;
Karch, Grzegorz .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) :247-262