Parameter estimation for blind classification of digital modulations

被引:4
|
作者
Phukan, Gaurav Jyoti [1 ]
Bora, Prabin Kumar [1 ]
机构
[1] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India
关键词
parameter estimation; modulation; signal processing; blind classification; digital modulation classification; quasi hybrid likelihood ratio test; QHLRT; signal gain; symbol rate; phase offset; noise power; signal to noise ratio; Cramer-Rao lower bound; LIKELIHOOD FUNCTION;
D O I
10.1049/iet-spr.2015.0373
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the performance of the likelihood-based digital modulation classification is explored with the blind estimation of the unknown parameters. Considering the practical implementation aspects, the quasi hybrid likelihood ratio test (QHLRT) is examined with the symbol rate, the signal gain, the noise power and the phase offset as the unknown parameters. In a blind scenario, new algorithms are proposed for the estimation of the unknown parameters with special focus on the improvement of classification performance at a low signal to noise ratio scenario. The performance bounds of the proposed estimators are established by the Cramer-Rao lower bound. The proposed method is compared with several existing algorithms to analyse the improvements achieved in the slow fading scenario. With the estimates of the unknown parameters, the performance of the QHLRT classifier is presented with reference to the theoretical upper bound. Finally, the QHLRT based method with the proposed parameter estimators is compared with the existing LB as well as certain feature based algorithms to highlight the improvements achieved.
引用
收藏
页码:758 / 769
页数:12
相关论文
共 50 条
  • [41] Fast Algorithm for Parameter Estimation of Hyperbolic Frequency Modulation Signals Based on Likelihood Function
    Ma Biyun
    Yuan Dapeng
    Liu Jiaojiao
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (05) : 1228 - 1234
  • [42] Qualitative parameter estimation for a class of relaxation oscillators
    Tang, Ying
    Franci, Alessio
    Postoyan, Romain
    IFAC PAPERSONLINE, 2017, 50 (01): : 2929 - 2934
  • [43] Robust adaptive parameter estimation of sinusoidal signals
    Na, Jing
    Yang, Juan
    Wu, Xing
    Guo, Yu
    AUTOMATICA, 2015, 53 : 376 - 384
  • [44] Parameter Estimation of Diffusive Molecular Communication With Drift
    Chen, Yanbin
    Li, Yu
    Lin, Lin
    Yan, Hao
    IEEE ACCESS, 2020, 8 : 142704 - 142713
  • [45] A parameter estimation method for K-distribution
    Marhaban, MH
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2004, E87B (10) : 3158 - 3162
  • [46] VIBRATION PARAMETER ESTIMATION USING FMCW RADAR
    Ding, Lei
    Ali, Murtaza
    Patole, Sujeet
    Dabak, Anand
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2224 - 2228
  • [47] Few-shot learning based blind parameter estimation for multiple frequency-hopping signals
    Lu, Keyu
    Qian, Zhisheng
    Wang, Manxi
    Wang, Dewang
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2023, 34 (01) : 271 - 289
  • [48] Few-shot learning based blind parameter estimation for multiple frequency-hopping signals
    Keyu Lu
    Zhisheng Qian
    Manxi Wang
    Dewang Wang
    Multidimensional Systems and Signal Processing, 2023, 34 : 271 - 289
  • [49] Computing Functions Over-the-Air Using Digital Modulations
    Razavikia, Saeed
    Barros da Silva, Jose Mairton, Jr.
    Fischione, Carlo
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5780 - 5786
  • [50] Incident parameter estimation
    Dabiri, A.
    Kulcs, B.
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 3518 - 3523