Parameter estimation for blind classification of digital modulations

被引:4
|
作者
Phukan, Gaurav Jyoti [1 ]
Bora, Prabin Kumar [1 ]
机构
[1] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India
关键词
parameter estimation; modulation; signal processing; blind classification; digital modulation classification; quasi hybrid likelihood ratio test; QHLRT; signal gain; symbol rate; phase offset; noise power; signal to noise ratio; Cramer-Rao lower bound; LIKELIHOOD FUNCTION;
D O I
10.1049/iet-spr.2015.0373
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the performance of the likelihood-based digital modulation classification is explored with the blind estimation of the unknown parameters. Considering the practical implementation aspects, the quasi hybrid likelihood ratio test (QHLRT) is examined with the symbol rate, the signal gain, the noise power and the phase offset as the unknown parameters. In a blind scenario, new algorithms are proposed for the estimation of the unknown parameters with special focus on the improvement of classification performance at a low signal to noise ratio scenario. The performance bounds of the proposed estimators are established by the Cramer-Rao lower bound. The proposed method is compared with several existing algorithms to analyse the improvements achieved in the slow fading scenario. With the estimates of the unknown parameters, the performance of the QHLRT classifier is presented with reference to the theoretical upper bound. Finally, the QHLRT based method with the proposed parameter estimators is compared with the existing LB as well as certain feature based algorithms to highlight the improvements achieved.
引用
收藏
页码:758 / 769
页数:12
相关论文
共 50 条
  • [31] Online Parameter Estimation in Digital Twins for Real-Time Condition Monitoring
    Hasan, Agus
    IEEE ACCESS, 2025, 13 : 14789 - 14800
  • [32] Factors Affecting the Item Parameter Estimation and Classification Accuracy of the Cognitive Diagnostic Models
    Sunbul, Secil Omur
    Kan, Adnan
    HACETTEPE UNIVERSITESI EGITIM FAKULTESI DERGISI-HACETTEPE UNIVERSITY JOURNAL OF EDUCATION, 2016, 31 (04): : 778 - 795
  • [33] A Metaheuristic Optimization Approach for Parameter Estimation in Arrhythmia Classification from Unbalanced Data
    Carlos Carrillo-Alarcon, Juan
    Alberto Morales-Rosales, Luis
    Rodriguez-Rangel, Hector
    Lobato-Baez, Mariana
    Munoz, Antonio
    Algredo-Badillo, Ignacio
    SENSORS, 2020, 20 (11)
  • [34] A compressive sampling-based method for classification and parameter estimation of FSK signals
    De Vito, Luca
    Dobre, Octavia A.
    MEASUREMENT, 2017, 98 : 439 - 444
  • [35] Parameter Estimation for the Fractional Hawkes Process
    Habyarimana, Cassien
    Aduda, Jane A.
    Scalas, Enrico
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024,
  • [36] Automatic classification of linear modulations using multiple receivers in the presence of symbol timing uncertainty
    Efendi, E.
    Dulek, B.
    ELECTRONICS LETTERS, 2019, 55 (18) : 994 - 996
  • [37] Blind Detection and Parameter Estimation of Single Frequency-Hopping Signal in Complex Electromagnetic Environment
    Ma, Yongkui
    Yan, Yuchao
    PROCEEDINGS OF 2016 SIXTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION & MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2016), 2016, : 370 - 374
  • [38] Improved Method for Blind Interleaver Parameter Estimation Using Matrix Multiplication From Scant Data
    Jung, Yongseok
    Jang, Mingyu
    Yoon, Dongweon
    IEEE ACCESS, 2021, 9 (09): : 138209 - 138214
  • [39] ELECTRIC LOAD PATTERN CLASSIFICATION USING PARAMETER ESTIMATION, CLUSTERING AND ARTIFICIAL NEURAL NETWORKS
    Buitrago, Jaime
    Abdulaal, Ahmed
    Asfour, Shihab
    INTERNATIONAL JOURNAL OF POWER AND ENERGY SYSTEMS, 2015, 35 (04) : 167 - 174
  • [40] Parameter Estimation and the CRLB with Uncertain Origin Measurements
    T. Kirubarajan
    Huimin Chen
    Yaakov Bar-Shalom
    Methodology And Computing In Applied Probability, 2001, 3 (4) : 387 - 410