Electron Trapping in InP Nanowire FETs with Stacking Faults

被引:99
|
作者
Wallentin, Jesper [1 ]
Ek, Martin [1 ]
Wallenberg, L. Reine [1 ]
Samuelson, Lars
Borgstrom, Magnus T.
机构
[1] Lund Univ, Polymer & Mat Chem NCHREM, Box 118, S-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
Nanowire; FET; ctystal structure; electron transport; mobility; III-V NANOWIRES; OPTICAL-PROPERTIES; SEMICONDUCTOR; PHOTOLUMINESCENCE; ABSORPTION; CONDUCTION;
D O I
10.1021/nl203213d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semiconductor III-V nanowires are promising components of future electronic and optoelectronic devices, but they typically show a mixed wurtzite-zinc blende crystal structure. Here we show, theoretically and experimentally, that the crystal structure dominates the conductivity in such InP nanowires. Undoped devices show very low conductivities and mobilities. The zincblende segments are quantum wells orthogonal to the current path and our calculations indicate that an electron concentration of up to 4.6 X 10(18) cm(-3) can be trapped in these. The calculations also show that the room temperature conductivity is controlled by the longest zincblende segment, and that stochastic variations in this length lead to an order of magnitude variation in conductivity. The mobility shows an unexpected decrease for low doping levels, as well as an unusual temperature dependence that bear resemblance with polycrystalline semiconductors.
引用
收藏
页码:151 / 155
页数:5
相关论文
共 50 条
  • [41] Position-controlled [100] InP nanowire arrays
    Wang, Jia
    Plissard, Sebastien
    Hocevar, Moira
    Vu, Thuy T. T.
    Zehender, Tilman
    Immink, George G. W.
    Verheijen, Marcel A.
    Haverkort, Jos
    Bakkers, Erik P. A. M.
    APPLIED PHYSICS LETTERS, 2012, 100 (05)
  • [42] Directional Lasing in Coupled InP Microring/Nanowire Systems
    Wong, Wei Wen
    Wang, Naiyin
    Jagadish, Chennupati
    Tan, Hark Hoe
    LASER & PHOTONICS REVIEWS, 2023, 17 (03)
  • [43] Ten-Fold Enhancement of InAs Nanowire Photoluminescence Emission with an InP Passivation Layer
    Jurczak, Pamela
    Zhang, Yunyan
    Wu, Jiang
    Sanchez, Ana M.
    Aagesen, Martin
    Liu, Huiyun
    NANO LETTERS, 2017, 17 (06) : 3629 - 3633
  • [44] Growth and optimization of GaInP/InP nanowire tunnel diode
    Zeng, Xulu
    Otnes, Gaute
    Heurlin, Magnus
    Borgstrom, Magnus T.
    2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 1286 - 1288
  • [45] Digital/Analog Performance Optimization of Vertical Nanowire FETs Using Machine Learning
    Yoon, Jun-Sik
    Lee, Seunghwan
    Yun, Hyeok
    Baek, Rock-Hyun
    IEEE ACCESS, 2021, 9 : 29071 - 29077
  • [46] Towards pharmacological treatment screening of cardiomyocyte cells using Si nanowire FETs
    Zadorozhnyi, Ihor
    Hlukhova, Hanna
    Kutovyi, Yurii
    Handziuk, Volodymyr
    Naumova, Nataliia
    Offenhaeusser, Andreas
    Vitusevich, Svetlana
    BIOSENSORS & BIOELECTRONICS, 2019, 137 : 229 - 235
  • [47] Assessment of the Electrical Performance of Short Channel InAs and Strained Si Nanowire FETs
    Grillet, Corentin
    Logoteta, Demetrio
    Cresti, Alessandro
    Pala, Marco G.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (05) : 2425 - 2431
  • [48] Electron Trapping in Polyethylene
    Wang, Yang
    Wu, Kai
    Cubero, David
    Mackernan, Donal
    Coker, David
    Quirke, Nick
    PROCEEDINGS OF THE 2013 IEEE INTERNATIONAL CONFERENCE ON SOLID DIELECTRICS (ICSD 2013), VOLS 1 AND 2, 2013, : 19 - 22
  • [49] Quantum simulation investigation of work-function variation in nanowire tunnel FETs
    Guan, Yunhe
    Carrillo-Nunez, Hamilton
    Georgiev, Vihar P.
    Asenov, Asen
    Liang, Feng
    Li, Zunchao
    Chen, Haifeng
    NANOTECHNOLOGY, 2021, 32 (15)
  • [50] Investigating the Scalability of Nanowire Junctionless Accumulation Mode FETs using an Intrinsic Pocket
    Jain, Aakash Kumar
    Singh, Jaspreet
    Kumar, Mamidala Jagadesh
    2019 IEEE SOI-3D-SUBTHRESHOLD MICROELECTRONICS TECHNOLOGY UNIFIED CONFERENCE (S3S), 2019,