Electron Trapping in InP Nanowire FETs with Stacking Faults

被引:99
|
作者
Wallentin, Jesper [1 ]
Ek, Martin [1 ]
Wallenberg, L. Reine [1 ]
Samuelson, Lars
Borgstrom, Magnus T.
机构
[1] Lund Univ, Polymer & Mat Chem NCHREM, Box 118, S-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
Nanowire; FET; ctystal structure; electron transport; mobility; III-V NANOWIRES; OPTICAL-PROPERTIES; SEMICONDUCTOR; PHOTOLUMINESCENCE; ABSORPTION; CONDUCTION;
D O I
10.1021/nl203213d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semiconductor III-V nanowires are promising components of future electronic and optoelectronic devices, but they typically show a mixed wurtzite-zinc blende crystal structure. Here we show, theoretically and experimentally, that the crystal structure dominates the conductivity in such InP nanowires. Undoped devices show very low conductivities and mobilities. The zincblende segments are quantum wells orthogonal to the current path and our calculations indicate that an electron concentration of up to 4.6 X 10(18) cm(-3) can be trapped in these. The calculations also show that the room temperature conductivity is controlled by the longest zincblende segment, and that stochastic variations in this length lead to an order of magnitude variation in conductivity. The mobility shows an unexpected decrease for low doping levels, as well as an unusual temperature dependence that bear resemblance with polycrystalline semiconductors.
引用
收藏
页码:151 / 155
页数:5
相关论文
共 50 条
  • [31] Effect of Random, Discrete Source Dopant Distributions on Nanowire Tunnel FETs
    Sylvia, Somaia Sarwat
    Habib, K. M. Masum
    Khayer, M. Abul
    Alam, Khairul
    Neupane, Mahesh
    Lake, Roger K.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (06) : 2208 - 2214
  • [32] Strain-Induced Performance Improvements in InAs Nanowire Tunnel FETs
    Conzatti, F.
    Pala, M. G.
    Esseni, D.
    Bano, E.
    Selmi, L.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (08) : 2085 - 2092
  • [33] Hydrogen Ion Sensing Using Schottky Contacted Silicon Nanowire FETs
    Yoo, Sung Keun
    Yang, Sung
    Lee, Jong-Hyun
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (06) : 745 - 748
  • [34] A Complete Charge Based Compact Model for Silicon Nanowire FETs Including Doping and Advanced Physical Effects
    Liu, Feng
    He, Jin
    Zhang, Lining
    Zhang, Jian
    Hu, Jinhua
    Zhang, Xing
    Chan, Mansun
    SISPAD: 2008 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2008, : 157 - +
  • [35] Demonstration of Transconductance Enhancement on (110) and (001) Strained-Nanowire FETs
    Seike, A.
    Takai, H.
    Tsuchida, I.
    Masuda, J.
    Kosemura, D.
    Ogura, A.
    Watanabe, T.
    Ohdomari, I.
    PHYSICS AND TECHNOLOGY OF HIGH-K GATE DIELECTRICS 7, 2009, 25 (06): : 427 - 430
  • [36] Revealing correlation of core rim structures, defects and stacking-faults in SiC ceramics by integrated scanning electron microscopy
    Zhao, Ting-Ting
    Gu, Hui
    Wang, Xian-Hao
    Xing, Juan-Juan
    Zhang, Zhi-Jun
    Zhu, Wen-Liang
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (01) : 204 - 212
  • [37] The effect of the stacking arrangement on the device behavior of bilayer MoS2 FETs
    Mukhopadhyay, Arnab
    Kanungo, Sayan
    Rahaman, Hafizur
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (01) : 161 - 168
  • [38] Growth of AII-Wurtzite InP/AIInP Core-Multishell Nanowire Array
    Ishizaka, Fumiya
    Hiraya, Yoshihiro
    Tomioka, Katsuhiro
    Motohisa, Junichi
    Fukui, Takashi
    NANO LETTERS, 2017, 17 (03) : 1350 - 1355
  • [39] Structural Properties of Wurtzite InP-InGaAs Nanowire Core-Shell Heterostructures
    Heurlin, Magnus
    Stankevic, Tomas
    Mickevicius, Simas
    Yngman, Sofie
    Lindgren, David
    Mikkelsen, Anders
    Feidenhans'l, Robert
    Borgstrom, Magnus T.
    Samuelson, Lars
    NANO LETTERS, 2015, 15 (04) : 2462 - 2467
  • [40] Dual-gate induced InP nanowire diode
    Storm, Kristian
    Nylund, Gustav
    Borgstrom, Magnus
    Wallentin, Jesper
    Fasth, Carina
    Thelander, Claes
    Samuelson, Lars
    PHYSICS OF SEMICONDUCTORS: 30TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, 2011, 1399