Electron Trapping in InP Nanowire FETs with Stacking Faults

被引:99
|
作者
Wallentin, Jesper [1 ]
Ek, Martin [1 ]
Wallenberg, L. Reine [1 ]
Samuelson, Lars
Borgstrom, Magnus T.
机构
[1] Lund Univ, Polymer & Mat Chem NCHREM, Box 118, S-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
Nanowire; FET; ctystal structure; electron transport; mobility; III-V NANOWIRES; OPTICAL-PROPERTIES; SEMICONDUCTOR; PHOTOLUMINESCENCE; ABSORPTION; CONDUCTION;
D O I
10.1021/nl203213d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semiconductor III-V nanowires are promising components of future electronic and optoelectronic devices, but they typically show a mixed wurtzite-zinc blende crystal structure. Here we show, theoretically and experimentally, that the crystal structure dominates the conductivity in such InP nanowires. Undoped devices show very low conductivities and mobilities. The zincblende segments are quantum wells orthogonal to the current path and our calculations indicate that an electron concentration of up to 4.6 X 10(18) cm(-3) can be trapped in these. The calculations also show that the room temperature conductivity is controlled by the longest zincblende segment, and that stochastic variations in this length lead to an order of magnitude variation in conductivity. The mobility shows an unexpected decrease for low doping levels, as well as an unusual temperature dependence that bear resemblance with polycrystalline semiconductors.
引用
收藏
页码:151 / 155
页数:5
相关论文
共 50 条
  • [21] Analysis of dopant diffusion in Si with stacking faults
    Okino, T
    Shimozaki, T
    MATERIALS TRANSACTIONS JIM, 1999, 40 (06): : 474 - 478
  • [22] Multiple Twinning and Stacking Faults in Silver Dendrites
    Radmilovic, Vuk V.
    Kacher, Josh
    Ivanovic, Evica R.
    Minor, Andrew M.
    Radmilovic, Velimir R.
    CRYSTAL GROWTH & DESIGN, 2016, 16 (01) : 467 - 474
  • [23] The Quantum and Classical Capacitance Limits of InSb and InAs Nanowire FETs
    Khayer, M. Abul
    Lake, Roger K.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (10) : 2215 - 2223
  • [24] Low-Frequency Noise in Vertical InAs Nanowire FETs
    Persson, Karl-Magnus
    Lind, Erik
    Dey, Anil W.
    Thelander, Claes
    Sjoland, Henrik
    Wernersson, Lars-Erik
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (05) : 428 - 430
  • [25] Simulation of the electrostatic and transport properties of 3D-stacked GAA silicon nanowire FETs
    Ruiz, F. G.
    Tienda-Luna, I. M.
    Godoy, A.
    Sampedro, C.
    Gamiz, F.
    Donetti, L.
    SOLID-STATE ELECTRONICS, 2011, 59 (01) : 62 - 67
  • [26] Ω-Gated Silicon and Strained Silicon Nanowire Array Tunneling FETs
    Richter, S.
    Sandow, C.
    Nichau, A.
    Trellenkamp, S.
    Schmidt, M.
    Luptak, R.
    Bourdelle, K. K.
    Zhao, Q. T.
    Mantl, S.
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (11) : 1535 - 1537
  • [27] Demonstration of InP/InAsP/InP axial heterostructure nanowire array vertical LEDs
    Akamatsu, Tomoya
    Tomioka, Katsuhiro
    Motohisa, Junichi
    NANOTECHNOLOGY, 2020, 31 (39)
  • [28] Stressor Efficacy and Mobility Enhancement in N-Channel Nanowire FETs
    Gupta, Anshul
    Gupta, Chant
    Bansal, Anil K.
    Dixit, Abhisek
    2017 INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2017,
  • [29] Ambipolar silicon nanowire FETs with stenciled-deposited metal gate
    Sacchetto, Davide
    Savu, Veronica
    De Micheli, Giovanni
    Brugger, Juergen
    Leblebici, Yusuf
    MICROELECTRONIC ENGINEERING, 2011, 88 (08) : 2732 - 2735
  • [30] Comprehensive Analysis of Gate-Induced Drain Leakage in Emerging FET Architectures: Nanotube FETs Versus Nanowire FETs
    Sahay, Shubham
    Kumar, Mamidala Jagadesh
    IEEE ACCESS, 2017, 5 : 18918 - 18926