High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations

被引:84
作者
Shi, Dongyang [1 ]
Zhang, Yadong [2 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
[2] Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
关键词
Sobolev equations; Nonconforming mixed finite element; New mixed variational form; Superclose and superconvergence;
D O I
10.1016/j.amc.2011.08.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonconforming mixed finite element scheme is proposed for Sobolev equations based on a new mixed variational form under semi-discrete and Euler fully-discrete schemes. The corresponding optimal convergence error estimates and superclose property are obtained without using Ritz projection, which are the same as the traditional mixed finite elements. Furthemore, the global superconvergence is obtained through interpolation postprocessing technique. The numerical results show the validity of the theoretical analysis. (c) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3176 / 3186
页数:11
相关论文
共 15 条
[1]  
Cao Yanhua, 2005, Mathematica Numerica Sinica, V27, P243
[2]  
[陈绍春 Chen Shaochun], 2010, [计算数学, Mathematica Numerica Sinica], V32, P213
[3]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[5]  
Guo H., 2006, ACTA MATH APPL SIN-E, V29, P610
[6]  
[郭玲 Guo Ling], 2006, [系统科学与数学, Journal of Systems Science and Mathematical Sciences], V26, P301
[7]  
Hale JK., 1969, ORDINARY DIFFERENTIA
[8]  
Jiang Z.W., 2001, Northeast. Math., V17, P301
[9]  
Lin Q., 2006, Finite Element Methods: Accuracy and Improvement
[10]  
Lin Q., 1996, Construction and Analysis of High Efficient Finite Elements