Topological states in amorphous magnetic photonic lattices

被引:50
作者
Yang, Bing [1 ,2 ,3 ]
Zhang, Hongfang [1 ,2 ]
Wu, Tong [3 ]
Dong, Ruixin [1 ,2 ]
Yan, Xunling [1 ,2 ]
Zhang, Xiangdong [3 ]
机构
[1] Liaocheng Univ, Sch Phys Sci & Informat Engn, Liaocheng 252059, Peoples R China
[2] Shandong Prov Key Lab Opt Commun Sci & Technol, Liaocheng 252059, Peoples R China
[3] Beijing Inst Technol, Sch Phys, Beijing Key Lab Nanophoton & Ultrafine Optoelect, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
EDGE STATES; CRYSTAL; BANDS;
D O I
10.1103/PhysRevB.99.045307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Since the discovery of topological phases in optical systems, most of the efforts have been focused on the periodic and quasiperiodic optical structures which have both long-range and short-range orders. In this paper, we construct a kind of two-dimensional aperiodic optical systems, named the amorphous magnetic photonic lattices (AMPLs), which only have short-range orders, and investigate the topological states in these AMPLs. By using the supercell method, we build supercell magnetic photonic crystals as approximate equivalents of the AMPLs. Based on the band structure calculation and full wave simulation, we demonstrate the existence of single-mode and multimode topological edge states in these AMPLs. Through calculating the gapless edge states in reciprocal space, our research gives an intuitive understanding of the topology underlying aperiodic optical systems. Our system provides a platform to explore the relationship between short-range orders and topology and also paves an easy way to fabricate topological optical devices in application.
引用
收藏
页数:7
相关论文
共 59 条
  • [1] Topological Insulators in Amorphous Systems
    Agarwala, Adhip
    Shenoy, Vijay B.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (23)
  • [2] Local density of states of chiral Hall edge states in gyrotropic photonic clusters
    Asatryan, Ara A.
    Botten, Lindsay C.
    Fang, Kejie
    Fan, Shanhui
    McPhedran, Ross C.
    [J]. PHYSICAL REVIEW B, 2013, 88 (03)
  • [3] Topological Photonic Quasicrystals: Fractal Topological Spectrum and Protected Transport
    Bandres, Miguel A.
    Rechtsman, Mikael C.
    Segev, Mordechai
    [J]. PHYSICAL REVIEW X, 2016, 6 (01):
  • [4] Colloquium: Topological band theory
    Bansil, A.
    Lin, Hsin
    Das, Tanmoy
    [J]. REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
  • [5] Cheng XJ, 2016, NAT MATER, V15, P542, DOI [10.1038/nmat4573, 10.1038/NMAT4573]
  • [6] Multiple flat photonic bands with finite Chern numbers
    Chui, S. T.
    Liu, Shiyang
    Lin, Zhifang
    [J]. PHYSICAL REVIEW E, 2013, 88 (03):
  • [7] Microscopic theory of photonic one-way edge mode
    Fang, Kejie
    Yu, Zongfu
    Fan, Shanhui
    [J]. PHYSICAL REVIEW B, 2011, 84 (07)
  • [8] Gao F, 2018, NAT PHYS, V14, P140, DOI [10.1038/nphys4304, 10.1038/NPHYS4304]
  • [9] Hafezi M, 2013, NAT PHOTONICS, V7, P1001, DOI [10.1038/nphoton.2013.274, 10.1038/NPHOTON.2013.274]
  • [10] Hafezi M, 2011, NAT PHYS, V7, P907, DOI [10.1038/NPHYS2063, 10.1038/nphys2063]