A Lasso-type Robust Variable Selection for Time-Course Microarray Data

被引:0
作者
Kim, Ji Young [1 ]
机构
[1] Mt Holyoke Coll, Dept Math & Stat, S Hadley, MA 01075 USA
关键词
Robust; Lasso; Multivariate response; Time-course gene expression; REGRESSION SHRINKAGE; MODEL SELECTION; ADAPTIVE LASSO;
D O I
10.1080/03610926.2013.770531
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Lasso has been widely used for variable selection because of its sparsity, and a number of its extensions have been developed. In this article, we propose a robust variant of Lasso for the time-course multivariate response, and develop an algorithm which transforms the optimization into a sequence of ridge regressions. The proposed method enables us to effectively handle multivariate responses and employs a basis representation of the regression parameters to reduce the dimensionality. We assess the proposed method through simulation and apply it to the microarray data.
引用
收藏
页码:1411 / 1425
页数:15
相关论文
共 21 条
[1]  
Bach FR, 2008, J MACH LEARN RES, V9, P1179
[2]   FMRI GROUP STUDIES OF BRAIN CONNECTIVITY VIA A GROUP ROBUST LASSO [J].
Chen, Xiaohui ;
Wang, Z. Jane ;
McKeown, Martin J. .
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, :589-592
[3]   Asymptotic Analysis of Robust LASSOs in the Presence of Noise With Large Variance [J].
Chen, Xiaohui ;
Wang, Z. Jane ;
McKeown, Martin J. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (10) :5131-5149
[4]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[5]   New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis [J].
Fan, JQ ;
Li, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :710-723
[6]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[7]  
Jacob L., 2009, P 26 ANN INT C MACH, P433, DOI [DOI 10.1145/1553374.1553431, 10.1145/1553374.1553431]
[8]   Robust regression through the Huber's criterion and adaptive lasso penalty [J].
Lambert-Lacroix, Sophie ;
Zwald, Laurent .
ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 :1015-1053
[9]   Clustering of time-course gene expression data using a mixed-effects model with B-splines [J].
Luan, YH ;
Li, HZ .
BIOINFORMATICS, 2003, 19 (04) :474-482
[10]   Supervised group Lasso with applications to microarray data analysis [J].
Ma, Shuangge ;
Song, Xiao ;
Huang, Jian .
BMC BIOINFORMATICS, 2007, 8 (1)