Probabilistic analysis of an a posteriori error estimator for finite elements

被引:4
作者
Díez, P [1 ]
Egozcue, JJ [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 3, ETS Ingn Caminos, E-08034 Barcelona, Spain
关键词
error estimation; probabilistic analysis; finite elements; adaptivity;
D O I
10.1142/S0218202501001136
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A residual type a posteriori error estimator for finite elements is analyzed using a new technique. In this case, the error estimate is the result of two consecutive projections of the exact error on two finite-dimensional subspaces. The analysis introduced in this paper is based on a probabilistic approach, that is, the idea is to assess the average value of the effectivity index (the ratio estimated error over exact error) by assuming the randomness of the exact error. The average value characterizes the mean behavior of the estimator and it is found to be related with some geometric properties of the subspaces. These geometric properties are obtained from the standard matrices of the linear systems arising in the formulation of the finite element method.
引用
收藏
页码:841 / 854
页数:14
相关论文
共 11 条
[1]   ANALYSIS OF THE EFFICIENCY OF AN A POSTERIORI ERROR ESTIMATOR FOR LINEAR TRIANGULAR FINITE-ELEMENTS [J].
BABUSKA, I ;
DURAN, R ;
RODRIGUEZ, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (04) :947-964
[2]   A unified approach to remeshing strategies for finite element h-adaptivity [J].
Díez, P ;
Huerta, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 176 (1-4) :215-229
[3]   A posteriori error estimation for standard finite element analysis [J].
Diez, P ;
Egozcue, JJ ;
Huerta, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 163 (1-4) :141-157
[4]  
Díez P, 2000, MECH COHES-FRICT MAT, V5, P87, DOI 10.1002/(SICI)1099-1484(200002)5:2<87::AID-CFM86>3.0.CO
[5]  
2-W
[6]  
Diez P, 1998, LECT NOTES PURE APPL, V196, P113
[7]  
DIEZ P, 1996, THESIS U POLITECNICA
[8]   ON THE ASYMPTOTIC EXACTNESS OF BANK-WEISER ESTIMATOR [J].
DURAN, R ;
RODRIGUEZ, R .
NUMERISCHE MATHEMATIK, 1992, 62 (03) :297-303
[9]   Error estimation including pollution assessment for nonlinear finite element analysis [J].
Huerta, A ;
Díez, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 181 (1-3) :21-41
[10]  
Lewis D.W., 1991, Matrix Theory