Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds

被引:79
作者
Liu, Lin [1 ]
Liu, Jinying [1 ]
Wang, Mingqi [1 ]
Min, Sijia [2 ]
Cai, Yurong [1 ]
Zhu, Liangjun [2 ]
Yao, Juming [1 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Mat & Textile, Key Lab Adv Textile Mat & Mfg Technol, Minist Educ, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ, Coll Anim Sci, Hangzhou 310029, Peoples R China
基金
中国国家自然科学基金;
关键词
biomineralization; hydroxyapatite; silk fibroin; composite; porous scaffold; biocompatibility;
D O I
10.1163/156856208783721010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Novel tissue engineering scaffold materials of nano-hydroxyapatite (nHA)/silk fibroin (SF) biocomposite were prepared by freeze-drying. The needle-like nHA crystals of about 10 nm in diameter by 50-80 nm in length, which were uniformly distributed in the porous nHA/SF scaffolds, were prepared by a co-precipitation method with a size. The as-prepared nHA/SF scaffolds showed good homogeneity, interconnected pores and high porosity. XRD and FT-IR analysis suggested that the silk fibroin was in beta-sheet structure, which usually provides outstanding mechanical properties for silk materials. In this work, composite scaffolds containing as high as 70% (w/w) nHA were prepared, which had excellent compressive modulus and strength, higher than the scaffolds at low nHA content level and other porous biodegradable polymeric scaffolds often considered in bone-related tissue engineering reported previously. The cell compatibility of composite scaffolds was evaluated through cell viability by MTT assay. All these results indicated that these nHA/SF scaffold materials may be a promising biomaterial for bone tissue engineering.
引用
收藏
页码:325 / 338
页数:14
相关论文
共 42 条
[1]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[2]   Heterogeneous structure of silk fibers from Bombyx mori resolved by 13C solid-state NMR spectroscopy [J].
Asakura, T ;
Yao, JM ;
Yamane, T ;
Umemura, K ;
Ulrich, AS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (30) :8794-8795
[3]   A repeated β-turn structure in poly(Ala-Gly) as a model for silk I of Bombyx mori silk fibroin studied with two-dimensional spin-diffusion NMR under off magic angle spinning and rotational echo double resonance [J].
Asakura, T ;
Ashida, J ;
Yamane, T ;
Kameda, T ;
Nakazawa, Y ;
Ohgo, K ;
Komatsu, K .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 306 (02) :291-305
[4]  
Asakura T., 1994, Encyclopedia of AgriculturalScience, P1
[5]   Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid [J].
Bigi, A ;
Boanini, E ;
Panzavolta, S ;
Roveri, N ;
Rubini, K .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (04) :709-715
[6]   Morphological study of hydroxyapatite nanocrystal suspension [J].
Bouyer, E ;
Gitzhofer, F ;
Boulos, MI .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2000, 11 (08) :523-531
[7]   Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent [J].
Chang, MC ;
Ikoma, T ;
Kikuchi, M ;
Tanaka, J .
JOURNAL OF MATERIALS SCIENCE LETTERS, 2001, 20 (13) :1199-1201
[8]   Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite [J].
Chen, D. Z. ;
Tang, C. Y. ;
Chan, K. C. ;
Tsui, C. P. ;
Yu, Peter H. F. ;
Leung, Mason C. P. ;
Uskokovic, P. S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2007, 67 (7-8) :1617-1626
[9]   Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals [J].
Deng, XM ;
Hao, JY ;
Wang, CS .
BIOMATERIALS, 2001, 22 (21) :2867-2873
[10]  
Du C, 2000, J BIOMED MATER RES, V50, P518, DOI 10.1002/(SICI)1097-4636(20000615)50:4<518::AID-JBM7>3.0.CO