Nonparametric tail estimation using a double bootstrap method

被引:17
作者
Caers, J
Van Dyck, J
机构
[1] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA
[2] Probabilitas, B-3000 Louvain, Belgium
关键词
D O I
10.1016/S0167-9473(98)00060-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Extreme value theory has led to the development of various statistical methods for nonparametric estimation of distribution tails. A common problem in all of these estimators is the choice of the number of extreme data that should be used in the estimation and the construction of confidence intervals on the estimator. In this paper, we outline a method that uses the nonparametric bootstrap for both problems. The bootstrap is twofold: (1) the first bootstrap is used to estimate the optimal number of extremes - in the mean square error sense - to be used for the tail index estimation as has been earlier suggested by Hall (1990, J. Multivariate Anal. 32 (1990) 177-203), and (2) the second bootstrap is used to obtain confidence intervals. The method has been applied to data generated by Monte Carlo simulation for a variety of distributions and on this basis the performance of the method will be assessed. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:191 / 211
页数:21
相关论文
共 14 条
[1]   EXPONENTIALLY DECREASING DISTRIBUTIONS FOR LOGARITHM OF PARTICLE-SIZE [J].
BARNDORFFNIELSEN, O .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 353 (1674) :401-419
[2]   Tail index estimation, pareto quantile plots, and regression diagnostics [J].
Beirlant, J ;
Vynckier, P ;
Teugels, JL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1659-1667
[3]   Bootstrap confidence intervals for tail indices [J].
Caers, J ;
Beirlant, J ;
Vynckier, P .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 26 (03) :259-277
[4]   KERNEL ESTIMATES OF THE TAIL INDEX OF A DISTRIBUTION [J].
CSORGO, S ;
DEHEUVELS, P ;
MASON, D .
ANNALS OF STATISTICS, 1985, 13 (03) :1050-1077
[5]   A MOMENT ESTIMATOR FOR THE INDEX OF AN EXTREME-VALUE DISTRIBUTION [J].
DEKKERS, ALM ;
EINMAHL, JHJ ;
DEHAAN, L .
ANNALS OF STATISTICS, 1989, 17 (04) :1833-1855
[6]  
Efron B., 1994, INTRO BOOTSTRAP, V57, DOI DOI 10.1201/9780429246593
[7]   USING THE BOOTSTRAP TO ESTIMATE MEAN SQUARED ERROR AND SELECT SMOOTHING PARAMETER IN NONPARAMETRIC PROBLEMS [J].
HALL, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 32 (02) :177-203
[8]   SIMPLE GENERAL APPROACH TO INFERENCE ABOUT TAIL OF A DISTRIBUTION [J].
HILL, BM .
ANNALS OF STATISTICS, 1975, 3 (05) :1163-1174
[9]  
Hogg R.V., 1984, LOSS DISTRIBUTIONS
[10]  
PICKANDS J, 1975, ANN STAT, V3, P119