Lp regularity of the Bergman projection on domains covered by the polydisc

被引:19
作者
Chen, Liwei [1 ]
Krantz, Steven G. [2 ]
Yuan, Yuan [3 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[2] Washington Univ, Dept Math & Stat, St Louis, MO 63130 USA
[3] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
Bergman projection; Symmetrized bidisc; FRIEDRICHS OPERATOR; SZEGO PROJECTIONS; KERNEL; GEOMETRY; SPACES;
D O I
10.1016/j.jfa.2020.108522
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a bounded domain can be covered by the polydisc through a rational proper holomorphic map, then the Bergman projection is L-p-bounded for pin a non trivial interval depending on the ramified rational covering. This result can be applied to the symmetrized polydisc and to the Hartogs triangle with exponent gamma. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 34 条
[1]   The hyperbolic geometry of the symmetrized bidisc [J].
Agler, J ;
Young, NJ .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :375-403
[2]   Operators having the symmetrized bidisc as a spectral set [J].
Agler, J ;
Young, NJ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2000, 43 :195-210
[3]   Algebraic and geometric aspects of rational Γ-inner functions [J].
Agler, Jim ;
Lykova, Zinaida A. ;
Young, N. J. .
ADVANCES IN MATHEMATICS, 2018, 328 :133-159
[4]  
[Anonymous], [No title captured]
[5]   BEHAVIOR OF THE BERGMAN PROJECTION ON THE DIEDERICH-FORNAESS WORM [J].
BARRETT, DE .
ACTA MATHEMATICA, 1992, 168 (1-2) :1-10
[6]   IRREGULARITY OF THE BERGMAN PROJECTION ON A SMOOTH BOUNDED DOMAIN IN C2 [J].
BARRETT, DE .
ANNALS OF MATHEMATICS, 1984, 119 (02) :431-436
[8]   PROPER HOLOMORPHIC MAPPINGS AND THE BERGMAN PROJECTION [J].
BELL, SR .
DUKE MATHEMATICAL JOURNAL, 1981, 48 (01) :167-175
[9]   Lp MAPPING PROPERTIES OF THE BERGMAN PROJECTION ON THE HARTOGS TRIANGLE [J].
Chakrabarti, Debraj ;
Zeytuncu, Yunus E. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (04) :1643-1653
[10]   Estimates for the Bergman and Szego projections for pseudoconvex domains of finite type with locally diagonalizable Levi form [J].
Charpentier, Philippe ;
Dupain, Yves .
PUBLICACIONS MATEMATIQUES, 2006, 50 (02) :413-446