Gaussian dynamic systems of zero entropy with loose and non-loose Bernoullicity

被引:3
作者
delaRue, T [1 ]
机构
[1] UNIV ROUEN,URA CNRS 1378,F-76130 MONT ST AIGNAN,FRANCE
关键词
D O I
10.1017/S0143385700008865
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct two real Gaussian dynamical systems of zero entropy; the first one is not loosely Bernoulli, and the second is a loosely Bernoulli Gaussian-Kronecker system. To get loose-Bernoullicity for the second system, we prove and use a property of planar Brownian motion on [0, 1]: we can recover the whole trajectory knowing only some angles formed by the motion.
引用
收藏
页码:379 / 404
页数:26
相关论文
共 11 条
[1]  
Cornfeld I. P., 1982, Ergodic Theory
[2]   MEAN MOTION AND GAUSSIAN DYNAMIC SYSTEM [J].
DELARUE, T .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (01) :45-56
[3]  
DELARUE T, 1993, CR ACAD SCI I-MATH, V317, P191
[4]  
DELJUNCO A, 1976, CAN J MATH, V28, P836
[5]   NEW K-AUTOMORPHISMS AND A PROBLEM OF KAKUTANI [J].
FELDMAN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1976, 24 (01) :16-38
[6]  
FERENCZI S, 1990, THESIS U AIX MARSEIL
[7]  
IWANIK A, 1991, CR ACAD SCI I-MATH, V312, P875
[8]   THE COMMUTANT IS THE WEAK CLOSURE OF THE POWERS, FOR RANK-1 TRANSFORMATIONS [J].
KING, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 :363-384
[9]  
Ornstein D. S, 1982, MEMOIRS AM MATH SOC, V262
[10]   VERSIK PROCESSES - 1ST STEPS [J].
ROTHSTEIN, A .
ISRAEL JOURNAL OF MATHEMATICS, 1980, 36 (3-4) :205-224