Time quasi-periodic unbounded perturbations of Schrodinger operators and KAM methods

被引:118
作者
Bambusi, D
Graffi, S
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
关键词
D O I
10.1007/s002200100426
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We eliminate by KAM methods the time dependence in a class of linear differential equations in l(2) subject to an unbounded, quasi-periodic forcing. This entails the pure-point nature of the Floquet spectrum of the operator H-0 + epsilonP(omegat) for epsilon small. Here H-0 is the one-dimensional Schrodinger operator p(2) + V, V(x) similar to \x\(alpha), alpha > 2 for \x\ --> infinity, the time quasi-periodic perturbation P may grow as \x\(beta), beta < (alpha - 2)/2, and the frequency vector omega is non resonant. The proof extends to infinite dimensional spaces the result valid for quasiperiodically forced linear differential equations and is based on Kuksin's estimate of solutions of homological equations with non-constant coefficients.
引用
收藏
页码:465 / 480
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 1985, Trends and Developments in the Eighties (Bielefeld, 1982/1983), P1
[2]  
Arnold VI., 1980, CHAPITRES SUPPLEMENT
[3]  
COMBESCURE M, 1987, ANN I H POINCARE, V47, P62
[4]  
Dimassi M., 1999, LONDON MATH SOC LECT, V268
[5]   Floquet Hamiltonians with pure point spectrum [J].
Duclos, P ;
Stovicek, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (02) :327-347
[6]  
Duclos P, 1999, ANN I H POINCARE-PHY, V71, P241
[7]  
Gallavotti G., 1983, ELEMENTS MECH
[8]   Absolute continuity of the Floquet spectrum for a nonlinearly forced harmonic oscillator [J].
Graffi, S ;
Yajima, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (02) :245-250
[9]   NON-STOCHASTICITY OF TIME-DEPENDENT QUADRATIC HAMILTONIANS AND THE SPECTRA OF CANONICAL-TRANSFORMATIONS [J].
HAGEDORN, GA ;
LOSS, M ;
SLAWNY, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (04) :521-531
[10]  
HOWLAND JS, 1989, ANN I H POINCARE, V49, P309