Progressing Antimicrobial Resistance Sensing Technologies across Human, Animal, and Environmental Health Domains

被引:15
作者
Fitzpatrick, Kira J. [1 ]
Rohlf, Hayden J. [1 ]
Sutherland, Tara D. [2 ]
Koo, Kevin M. [1 ,7 ]
Beckett, Sam [2 ]
Okelo, Walter O. [2 ]
Keyburn, Anthony L. [2 ]
Morgan, Branwen S. [2 ,3 ]
Drigo, Barbara [3 ]
Trau, Matt [4 ,5 ]
Donner, Erica [3 ]
Djordjevic, Steven P. [6 ]
De Barro, Paul J. [2 ]
机构
[1] XING Technol Pty Ltd, XING Appl Res & Assay Dev XARAD Div, Brisbane, Qld 4073, Australia
[2] Commonwealth Sci & Ind Res Org CSIRO Black Mt, Canberra, ACT 2601, Australia
[3] Univ South Australia, Future Ind Inst, Adelaide, SA 5095, Australia
[4] Univ Queensland, Ctr Personalised Nanomed, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[5] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
[6] Univ Technol Sydney, Ithree Inst, Sydney, NSW 2007, Australia
[7] Univ Queensland, Ctr Clin Res UQCCR, Brisbane, Qld 4029, Australia
关键词
sensing technologies; antimicrobial resistance; antimicrobial susceptibility testing; antimicrobial resistance gene; One Health; metagenomics; microfluidic; point-of-need; machine learning; ANTIBIOTIC SUSCEPTIBILITY; E.-COLI; POINT; CARE; BACTERIA; DEVICES; SYSTEM; TIME; AMPLIFICATION; NANOPARTICLES;
D O I
10.1021/acssensors.1c01973
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The spread of antimicrobial resistance (AMR) is a rapidly growing threat to humankind on both regional and global scales. As countries worldwide prepare to embrace a One Health approach to AMR management, which is one that recognizes the interconnectivity between human, animal, and environmental health, increasing attention is being paid to identifying and monitoring key contributing factors and critical control points. Presently, AMR sensing technologies have significantly progressed phenotypic antimicrobial susceptibility testing (AST) and genotypic antimicrobial resistance gene (ARG) detection in human healthcare. For effective AMR management, an evolution of innovative sensing technologies is needed for tackling the unique challenges of interconnected AMR across various and different health domains. This review comprehensively discusses the modern state-of-play for innovative commercial and emerging AMR sensing technologies, including sequencing, microfluidic, and miniaturized point-of-need platforms. With a unique view toward the future of One Health, we also provide our perspectives and outlook on the constantly changing landscape of AMR sensing technologies beyond the human health domain.
引用
收藏
页码:4283 / 4296
页数:14
相关论文
共 102 条
[1]   Rapid bacterial detection and antibiotic susceptibility testing in whole blood using one-step, high throughput blood digital PCR [J].
Abram, Timothy J. ;
Cherukury, Hemanth ;
Ou, Chen-Yin ;
Tam Vu ;
Toledano, Michael ;
Li, Yiyan ;
Grunwald, Jonathan T. ;
Toosky, Melody N. ;
Tifrea, Delia F. ;
Slepenkin, Anatoly ;
Chong, Jonathan ;
Kong, Lingshun ;
Del Pozo, Domenica Vanessa ;
Kieu Thai La ;
Labanieh, Louai ;
Zimak, Jan ;
Shen, Byron ;
Huang, Susan S. ;
Gratton, Enrico ;
Peterson, Ellena M. ;
Zhao, Weian .
LAB ON A CHIP, 2020, 20 (03) :477-489
[2]   Bold steps to tackle resistance [J].
不详 .
NATURE REVIEWS MICROBIOLOGY, 2020, 18 (05) :257-257
[3]   NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes [J].
Arango-Argoty, G. A. ;
Dai, D. ;
Pruden, A. ;
Vikesland, P. ;
Heath, L. S. ;
Zhang, L. .
MICROBIOME, 2019, 7 (1)
[4]   DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data [J].
Arango-Argoty, Gustavo ;
Garner, Emily ;
Prudent, Amy ;
Heath, Lenwood S. ;
Vikesland, Peter ;
Zhang, Liqing .
MICROBIOME, 2018, 6
[5]  
Asif M, 2020, ANALYST, V145, P7320, DOI [10.1039/d0an01075h, 10.1039/D0AN01075H]
[6]   Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays [J].
Avesar, Jonathan ;
Rosenfeld, Dekel ;
Truman-Rosentsvit, Marianna ;
Ben-Arye, Tom ;
Geffen, Yuval ;
Bercovici, Moran ;
Levenberg, Shulamit .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (29) :E5787-E5795
[7]   Nanoliter-Sized Microchamber/Microarray Microfluidic Platform for Antibiotic Susceptibility Testing [J].
Azizi, Morteza ;
Zaferani, Meisam ;
Dogan, Belgin ;
Zhang, Shiying ;
Simpson, Kenneth W. ;
Abbaspourrad, Alireza .
ANALYTICAL CHEMISTRY, 2018, 90 (24) :14137-14144
[8]   Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging [J].
Baltekin, Ozden ;
Boucharin, Alexis ;
Tano, Eva ;
Andersson, Dan I. ;
Elf, Johan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (34) :9170-9175
[9]   Cantilever Sensors for Rapid Optical Antimicrobial Sensitivity Testing [J].
Bennett, Isabel ;
Pyne, Alice L. B. ;
McKendry, Rachel A. .
ACS SENSORS, 2020, 5 (10) :3133-3139
[10]   Tackling antibiotic resistance: the environmental framework [J].
Berendonk, Thomas U. ;
Manaia, Celia M. ;
Merlin, Christophe ;
Fatta-Kassinos, Despo ;
Cytryn, Eddie ;
Walsh, Fiona ;
Buergmann, Helmut ;
Sorum, Henning ;
Norstrom, Madelaine ;
Pons, Marie-Noelle ;
Kreuzinger, Norbert ;
Huovinen, Pentti ;
Stefani, Stefania ;
Schwartz, Thomas ;
Kisand, Veljo ;
Baquero, Fernando ;
Luis Martinez, Jose .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (05) :310-317