Precisely modeling zero-inflated count phenotype for rare variants

被引:1
作者
Fan, Qiao [1 ]
Sun, Shuming [2 ]
Li, Yi-Ju [3 ]
机构
[1] Natl Univ Singapore, Ctr Quantitat Med, Duke NUS Med Sch, Singapore, Singapore
[2] Duke Univ, Sch Med, Duke Mol Physiol Inst, Durham, NC 27710 USA
[3] Duke Univ, Sch Med, Dept Biostat & Bioinformat, DUMC Box 104775, Durham, NC 27710 USA
基金
美国国家卫生研究院;
关键词
burden test; kernel test; rare variant; zero-inflated count; POISSON REGRESSION; ASSOCIATION;
D O I
10.1002/gepi.22438
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Count data with excessive zeros are increasingly ubiquitous in genetic association studies, such as neuritic plaques in brain pathology for Alzheimer's disease. Here, we developed gene-based association tests to model such data by a mixture of two distributions, one for the structural zeros contributed by the Binomial distribution, and the other for the counts from the Poisson distribution. We derived the score statistics of the corresponding parameter of the rare variants in the zero-inflated Poisson regression model, and then constructed burden (ZIP-b) and kernel (ZIP-k) tests for the association tests. We evaluated omnibus tests that combined both ZIP-b and ZIP-k tests. Through simulated sequence data, we illustrated the potential power gain of our proposed method over a two-stage method that analyzes binary and non-zero continuous data separately for both burden and kernel tests. The ZIP burden test outperformed the kernel test as expected in all scenarios except for the scenario of variants with a mixture of directions in the genetic effects. We further demonstrated its applications to analyses of the neuritic plaque data in the ROSMAP cohort. We expect our proposed test to be useful in practice as more powerful than or complementary to the two-stage method.
引用
收藏
页码:73 / 86
页数:14
相关论文
共 30 条
  • [1] Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias
    Beecham, Gary W.
    Hamilton, Kara
    Naj, Adam C.
    Martin, Eden R.
    Huentelman, Matt
    Myers, Amanda J.
    Corneveaux, Jason J.
    Hardys, John
    Vonsatte, Jean-Paul, I
    Younkin, Steven G.
    Bennett, David A.
    De Jager, Philip L.
    Larson, Eric B.
    Crane, Paul K.
    Kamboh, M. Ilyas
    Kofler, Julia K.
    Mash, Deborah C.
    Duque, Linda
    Gilbertl, John R.
    Gwirtsman, Harry
    Buxbaum, Joseph D.
    Kramer, Patricia
    Dickson, Dennis W.
    Farrer, Lindsay A.
    Frosch, Matthew P.
    Ghetti, Bernardino
    Haines, Jonathan L.
    Hyman, Bradley T.
    Kuku, Walter A.
    Mayeux, Richard P.
    Pericak-Vancel, Margaret A.
    Schneider, Julie A.
    Trojanowski, John Q.
    Reiman, Eric M.
    Schellenberg, Gerard D.
    Montine, Thomas J.
    [J]. PLOS GENETICS, 2014, 10 (09):
  • [2] Religious Orders Study and Rush Memory and Aging Project
    Bennett, David A.
    Buchman, Aron S.
    Boyle, Patricia A.
    Barnes, Lisa L.
    Wilson, Robert S.
    Schneider, Julie A.
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2018, 64 : S161 - S189
  • [3] Efficient mixed model approach for large-scale genome-wide association studies of ordinal categorical phenotypes
    Bi, Wenjian
    Zhou, Wei
    Dey, Rounak
    Mukherjee, Bhramar
    Sampson, Joshua N.
    Lee, Seunggeun
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (05) : 825 - 839
  • [4] Genome-wide association of phenotypes based on clustering patterns of hand osteoarthritis identify WNT9A as novel osteoarthritis gene
    Boer, Cindy Germaine
    Yau, Michelle S.
    Rice, Sarah J.
    de Almeida, Rodrigo Coutinho
    Cheung, Kathleen
    Styrkarsdottir, Unnur
    Southam, Lorraine
    Broer, Linda
    Wilkinson, Jeremy Mark
    Uitterlinden, Andre G.
    Zeggini, Eleftheria
    Felson, David
    Loughlin, John
    Young, Mariel
    Capellini, Terence Dante
    Meulenbelt, Ingrid
    van Meurs, Joyce B. J.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2021, 80 (03) : 367 - 375
  • [5] The UK Biobank resource with deep phenotyping and genomic data
    Bycroft, Clare
    Freeman, Colin
    Petkova, Desislava
    Band, Gavin
    Elliott, Lloyd T.
    Sharp, Kevin
    Motyer, Allan
    Vukcevic, Damjan
    Delaneau, Olivier
    O'Connell, Jared
    Cortes, Adrian
    Welsh, Samantha
    Young, Alan
    Effingham, Mark
    McVean, Gil
    Leslie, Stephen
    Allen, Naomi
    Donnelly, Peter
    Marchini, Jonathan
    [J]. NATURE, 2018, 562 (7726) : 203 - +
  • [6] Association of OCT-Derived Drusen Measurements with AMD-Associated Genotypic SNPs in the Amish Population
    Chavali, Venkata Ramana Murthy
    Diniz, Bruno
    Huang, Jiayan
    Ying, Gui-Shuang
    Sadda, SriniVas R.
    Stambolian, Dwight
    [J]. JOURNAL OF CLINICAL MEDICINE, 2015, 4 (02) : 304 - 317
  • [7] Davies R. B., 1980, APPLIED STATISTICS, V29, P323, DOI DOI 10.2307/2346911
  • [8] Famoye F., 2006, J DATA SCI, V4, P117, DOI 10.6339/JDS.2006.04(1).257
  • [9] Variance components genetic association test for zero-inflated count outcomes
    Goodman, Matthew O.
    Chibnik, Lori
    Cai, Tianxi
    [J]. GENETIC EPIDEMIOLOGY, 2019, 43 (01) : 82 - 101
  • [10] Score test for zero inflated generalized Poisson regression model
    Gupta, PL
    Gupta, RC
    Tripathi, RC
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (01) : 47 - 64