A classification of pentavalent arc-transitive bicirculants

被引:16
作者
Antoncic, Iva [1 ]
Hujdurovic, Ademir [1 ,2 ]
Kutnar, Klavdija [1 ,2 ]
机构
[1] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[2] Univ Primorska, IAM, Koper 6000, Slovenia
关键词
Bicirculant; Vertex-transitive; Edge-transitive; Arc-transitive; Automorphism group; GRAPHS; COVERINGS;
D O I
10.1007/s10801-014-0548-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bicirculant is a graph admitting an automorphism with two cycles of equal length in its cycle decomposition. A graph is said to be arc-transitive if its automorphism group acts transitively on the set of its arcs. All cubic and tetravalent arc-transitive bicirculants are known, and this paper gives a complete classification of connected pentavalent arc-transitive bicirculants. In particular, it is shown that, with the exception of seven particular graphs, a connected pentavalent bicirculant is arc-transitive if and only if it is isomorphic to a Cayley graph Cay(D-2n, {b, ba, ba(r+1), ba(r2+r+1), ba(r3+r2+r+1)}) on the dihedral group D-2n = < a, b | a(n) = b(2) = baba = 1 >, where r is an element of Z(n)* such that r(4) + r(3) + r(2) + r + 1 = 0 (mod n).
引用
收藏
页码:643 / 668
页数:26
相关论文
共 29 条
[1]   Classification of Symmetric Tabajn Graphs [J].
Arroyo, Aubin ;
Hubard, Isabel ;
Kutnar, Klavdija ;
O'Reilly, Eugenia ;
Sparl, Primoz .
GRAPHS AND COMBINATORICS, 2015, 31 (05) :1137-1153
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]   2-Arc-transitive regular covers of complete graphs having the covering transformation group Z3p [J].
Du, SF ;
Kwak, JH ;
Xu, MY .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (01) :73-93
[4]   Classification of 2-arc-transitive dihedrants [J].
Du, Shaofei ;
Malnic, Aleksander ;
Marusic, Dragan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (06) :1349-1372
[5]   Classification of cubic symmetric tetracirculants and pentacirculants [J].
Frelih, Bostjan ;
Kutnar, Klavdija .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) :169-194
[6]   GROUPS OF GENERALIZED PETERSEN GRAPHS [J].
FRUCHT, R ;
GRAVER, JE ;
WATKINS, ME .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (SEP) :211-&
[7]  
Godsil C.D., 2001, Algebraic Graph Theory
[8]  
Gross J. L., 1987, Topological Graph Theory
[9]   GENERATING ALL GRAPH COVERINGS BY PERMUTATION VOLTAGE ASSIGNMENTS [J].
GROSS, JL ;
TUCKER, TW .
DISCRETE MATHEMATICS, 1977, 18 (03) :273-283
[10]   A note on pentavalent s-transitive graphs [J].
Guo, Song-Tao ;
Feng, Yan-Quan .
DISCRETE MATHEMATICS, 2012, 312 (15) :2214-2216