Geometry of regular modules over canonical algebras

被引:9
作者
Bobinski, Grzegorz [1 ]
机构
[1] Nicholas Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
canonical algebra; module variety; normal variety; complete intersection;
D O I
10.1090/S0002-9947-07-04174-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify canonical algebras such that for every dimension vector of a regular module the corresponding module variety is normal (respectively, a complete intersection). We also prove that for the dimension vectors of regular modules normality is equivalent to irreducibility.
引用
收藏
页码:717 / 742
页数:26
相关论文
共 23 条
[1]   Module varieties over canonical algebras [J].
Barot, M ;
Schröer, J .
JOURNAL OF ALGEBRA, 2001, 246 (01) :175-192
[2]   Geometry of periodic modules over tame concealed and tubular algebras [J].
Bobinski, G ;
Skowronski, A .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (02) :187-200
[3]   MINIMAL SINGULARITIES FOR REPRESENTATIONS OF DYNKIN QUIVERS [J].
BONGARTZ, K .
COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (04) :575-611
[4]  
BONGARTZ K, 1983, J LOND MATH SOC, V28, P461
[5]   On degenerations and extensions of finite dimensional modules [J].
Bongartz, K .
ADVANCES IN MATHEMATICS, 1996, 121 (02) :245-287
[6]  
BONGARTZ K, 1998, ALGEBRAS MODULES, V1, P1
[7]  
Crawley-Boevey W, 2002, J REINE ANGEW MATH, V553, P201
[8]   Invariant theory of canonical algebras [J].
Domokos, M ;
Lenzing, H .
JOURNAL OF ALGEBRA, 2000, 228 (02) :738-762
[9]   Moduli spaces for representations of concealed-canonical algebras [J].
Domokos, M ;
Lenzing, H .
JOURNAL OF ALGEBRA, 2002, 251 (01) :371-394
[10]  
GEIGLE W, 1987, SINGULARITIES REPRES, P265