Analysis of global dynamics in a parametrically excited thin plate

被引:0
|
作者
Zhang, W [1 ]
机构
[1] Beijing Polytech Univ, Coll Mech Engn, Beijing 100022, Peoples R China
关键词
rectangular thin plate; global bifurcations; normal form; chaos;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The global bifurcations and chaos of a simply supported rectangular thin plate with parametric excitation are analyzed. The formulas of the thin plate are derived by von Karman type equation and Galerkin's approach. The method of multiple scales is used to obtain the averaged equations. Based on the averaged equations, the theory of the normal form is used to give the explicit expressions of the normal form associated with a double zero and a pair of pure imaginary eigenvalues by Maple program. On the basis of the normal form, a global bifurcation analysis of the parametrically excited rectangular thin plate is given by the global perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is also found by numerical simulation.
引用
收藏
页码:71 / 85
页数:15
相关论文
共 50 条