Degenerations of 7-dimensional nilpotent Lie algebras

被引:38
作者
Burde, D [1 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
关键词
degeneration; variety of nilpotent Lie algebra laws;
D O I
10.1081/AGB-200053956
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the varieties of Lie algebra laws and their subvarieties of nilpotent Lie algebra laws. We classify all degenerations of (almost all) five-step and six-step nilpotent seven-dimensional complex Lie algebras. One of the main tools is the use of trivial and adjoint cohomology of these algebras. In addition, we give some new results on the varieties of complex Lie algebra laws in low dimension.
引用
收藏
页码:1259 / 1277
页数:19
相关论文
共 13 条
[1]   Irreducible components of the variety of nilpotent Lie algebras [J].
AncocheaBermudez, JM ;
GomezMartin, JR ;
Valeiras, G ;
Goze, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 106 (01) :11-22
[2]  
Burde D, 1999, J LIE THEORY, V9, P193
[3]   Classification of orbit closures of 4-dimensional complex Lie algebras [J].
Burde, D ;
Steinhoff, C .
JOURNAL OF ALGEBRA, 1999, 214 (02) :729-739
[4]   THE VARIETIES OF LIE-ALGEBRAS OF DIMENSION LESS-THAN-OR-EQUAL-TO 7 [J].
CARLES, R ;
DIAKITE, Y .
JOURNAL OF ALGEBRA, 1984, 91 (01) :53-63
[5]   THE STRUCTURE OF RIGID LIE-ALGEBRAS [J].
CARLES, R .
ANNALES DE L INSTITUT FOURIER, 1984, 34 (03) :65-82
[6]   VARIETIES OF NILPOTENT LIE-ALGEBRAS OF DIMENSION LESS THAN 6 [J].
GRUNEWALD, F ;
OHALLORAN, J .
JOURNAL OF ALGEBRA, 1988, 112 (02) :315-325
[7]   ON THE CONTRACTION OF GROUPS AND THEIR REPRESENTATIONS [J].
INONU, E ;
WIGNER, EP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1953, 39 (06) :510-524
[8]  
Kirillov A., 1987, An Transl., II. Ser., American Mathematical Society, V137, P21
[9]   Degenerations of Lie algebras and geometry of Lie groups [J].
Lauret, J .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 18 (02) :177-194
[10]  
MAGNIN L, 1995, ADJOINT TRIVIAL COHO