On iteration semiring-semimodule pairs

被引:23
作者
Esik, Z. [1 ]
Kuich, W.
机构
[1] Vienna Univ Technol, Inst Diskrete Math & Geomet, A-1060 Vienna, Austria
[2] Univ Rovira & Virgili, GRLMC, Tarragona, Spain
[3] Univ Szeged, Dept Comp Sci, Syeged, Hungary
关键词
Group Equation; Formal Power Series; Matricial Theory; Regular Language; Product Operation;
D O I
10.1007/s00233-007-0709-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Conway semiring-module pairs and iteration semiring-semimodule pairs were shown to provide an axiomatic basis to automata on omega-words in [Bloom, Esik: Iteration Theories, Springer, 1993]. In this paper, we show that two natural classes of semiring-semimodule pairs, the complete and the bi-inductive semiring-semimodule pairs both give rise to iteration semiring-semimodule pairs. Complete semiring-semimodule pairs are defined by infinite sums and products, while a bi-inductive semiring-semimodule pair is an ordered semiring-semimodule pair possessing enough least pre-fixed points and greatest post-fixed points to solve linear inequations. Moreover, we show that when V is idempotent, then a semiring-semimodule pair equipped with a star and an omega operation satisfies the Conway equations (iteration semiring-semimodule pair equations, respectively) if and only if the quemiring associated with (S, V) embeds in a Conway semiring (iteration semiring, respectively).
引用
收藏
页码:129 / 159
页数:31
相关论文
共 22 条
  • [1] [Anonymous], 2004, PURE APPL MATH
  • [2] BEKIC H, 1969, DEFINABLE OPERAIONS
  • [3] Bloom Stephen L, 1993, Iteration theories
  • [4] Bouyer P., 2002, Journal of Automata, Languages and Combinatorics, V7, P167
  • [5] CONWAY JH, 1971, REGULAR ALBEBRA FINI
  • [6] Debakker J. W., 1969, THEORY PROGRAMS
  • [7] Droste M, 2003, LECT NOTES COMPUT SC, V2719, P426
  • [8] EILENBERG S, 1974, AUTOMATA LANGUAGES A
  • [9] MATRICIAL THEORIES
    ELGOT, CC
    [J]. JOURNAL OF ALGEBRA, 1976, 42 (02) : 391 - 421
  • [10] Inductive *-semirings
    Ésik, Z
    Kuich, W
    [J]. THEORETICAL COMPUTER SCIENCE, 2004, 324 (01) : 3 - 33