Reducers and K0 with support

被引:1
作者
Chanda, Subhajit [1 ]
Sane, Sarang [1 ]
机构
[1] IIT Madras, Dept Math, NAC, Chennai 600036, Tamil Nadu, India
关键词
K-0; Serre subcategories; chain complexes; arithmetic rank; grade; projective dimension; GROTHENDIECK GROUPS; MODULES;
D O I
10.1080/00927872.2021.1964027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative noetherian ring, L be a Serre subcategory of the category of finitely generated R-modules and P be the category of finitely generated projective R-modules. We define invariants based on the categories of chain complexes from P homologically supported in L with support between 0 and n ({ChL[0,n](P)}n is an element of N) and the K-group with support K0(R on L) similar to the stable range in classical K-theory. We introduce a notion called a reducer which we use to express the class of a complex in terms of classes of complexes of smaller amplitude and use these to study and bound the above defined invariants by standard invariants like arithmetic rank, grade and projective dimension. We also give conditions for K0(R on L) to be isomorphic to K0(modules in L withfiniteprojective dimension).
引用
收藏
页码:635 / 660
页数:26
相关论文
共 18 条
[1]   GROTHENDIECK GROUPS AND PICARD GROUPS OF ABELIAN GROUP RINGS [J].
BASS, H ;
MURTHY, MP .
ANNALS OF MATHEMATICS, 1967, 86 (01) :16-&
[2]  
Bass H., 1964, I HAUTES ETUDES SCI, V22, P5, DOI [10.1007/bf02684689, DOI 10.1007/BF02684689, 10.1007/BF02684689]
[3]  
Bruns W., 1993, COHEN MACAULAY RINGS
[4]  
Foxby H.-B., 1982, COPENHAGEN U PREPRIN, V1
[5]   Grothendieck groups for categories of complexes [J].
Foxby, Hans-Bjorn ;
Halvorsen, Esben Bistrup .
JOURNAL OF K-THEORY, 2009, 3 (01) :165-203
[6]  
GABRIEL P., 1962, B SOC MATH FR, V90, P323, DOI [10.24033/bsmf.1583, DOI 10.24033/BSMF.1583]
[7]   LYUBEZNIK RESOLUTIONS AND THE ARITHMETICAL RANK OF MONOMIAL IDEALS [J].
Kimura, Kyouko .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (11) :3627-3635
[8]  
LYUBEZNIK G, 1984, LECT NOTES MATH, V1092, P214
[9]   Regularity and algebraic properties of certain lattice ideals [J].
Neves, Jorge ;
Pinto, Maria Vaz ;
Villarreal, Rafael H. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (04) :777-806
[10]  
Quillen D., 1973, LECT NOTES MATH, V341, P85, DOI 10.1007/BFb0067053