Self-Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries

被引:100
作者
Ji, Heng-Xing [3 ]
Wu, Xing-Long [1 ,2 ]
Fan, Li-Zhen [5 ]
Krien, Cornelia [3 ]
Fiering, Irina [3 ]
Guo, Yu-Guo [1 ,2 ]
Mei, Yongfeng [3 ,6 ]
Schmidt, Oliver G. [3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Chem, Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Ctr Mol Sci, Beijing Natl Lab Mol Sci BNLMS, Beijing 100190, Peoples R China
[3] IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany
[4] Tech Univ Chemnitz, D-09107 Chemnitz, Germany
[5] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[6] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
THIN-FILM; ELECTROCHEMICAL LITHIATION; CATHODE MATERIALS; STORAGE DEVICES; ENERGY-STORAGE; PERFORMANCE; RUO2; ANODES; FABRICATION; CONVERSION;
D O I
10.1002/adma.201001422
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-wound nanomembranes out of functional multilayered structures are designed to improve lithium storage performance. The intrinsic strain is relaxed by rolling; the composite components are uniformly dispersed; the micro/nanohierarchical structure assumes a mixed ion/electron conduction network; and conventional nanomembrane deposition techniques allow for various materials combinations, suitable to meet different demands of lithium ion batteries.
引用
收藏
页码:4591 / 4595
页数:5
相关论文
共 44 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   MODELING THE VOLTAMMETRIC STUDY OF INTERCALATION IN A HOST STRUCTURE - APPLICATION TO LITHIUM INTERCALATION IN RUO2 [J].
ARMAND, M ;
DALARD, F ;
DEROO, D ;
MOULIOM, C .
SOLID STATE IONICS, 1985, 15 (03) :205-210
[3]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[4]   6Li MAS NMR Investigation of Electrochemical Lithiation of RuO2: Evidence for an Interfacial Storage Mechanism [J].
Bekaert, Emilie ;
Balaya, Palani ;
Murugavel, Sevi ;
Maier, Joachim ;
Menetrier, Michel .
CHEMISTRY OF MATERIALS, 2009, 21 (05) :856-861
[5]   Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings [J].
Bell, DJ ;
Dong, LX ;
Nelson, BJ ;
Golling, M ;
Zhang, L ;
Grützmacher, D .
NANO LETTERS, 2006, 6 (04) :725-729
[6]   Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J].
Besenhard, JO ;
Yang, J ;
Winter, M .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :87-90
[7]   Materials for lithium thin-film batteries for application in silicon technology [J].
Birke, P ;
Chu, WF ;
Weppner, W .
SOLID STATE IONICS, 1996, 93 (1-2) :1-15
[8]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[9]   Bending and wrinkling as competing relaxation pathways for strained free-hanging films [J].
Cendula, P. ;
Kiravittaya, S. ;
Mei, Y. F. ;
Deneke, Ch. ;
Schmidt, O. G. .
PHYSICAL REVIEW B, 2009, 79 (08)
[10]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35