Simulation of anomalous transport in tokamaks using the FACETS code

被引:5
作者
Pankin, Alexei Y. [1 ]
Pletzer, Alex [2 ]
Vadlamani, Srinath [2 ]
Cary, John R. [2 ]
Hakim, Ammar [2 ]
Kruger, Scott E. [2 ]
Miah, Mahmood [2 ]
Rognlien, Thomas D.
Shasharina, Svetlana [2 ]
Bateman, Glenn [1 ]
Kritz, Arnold H. [1 ]
Rafiq, Tariq [1 ]
机构
[1] Lehigh Univ, Bethlehem, PA 18015 USA
[2] Tech X Corp, Boulder, CO USA
关键词
Predictive modeling; Anomalous transport; Plasma turbulence;
D O I
10.1016/j.cpc.2010.07.038
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The development of a new parallel framework for integrated modeling of tokamak plasmas is a primary objective of the SciDAC Framework Architecture for Core-Edge Transport Simulations (FACETS) project The FACETS code will be used to predict the performance of tokamak discharges and to optimize tokamak discharge scenarios Novel parallel numerical algorithms and solvers have been developed in the FACETS project in order to simulate the multi-scale dynamics of tokamak plasmas The status of development of modules for anomalous transport in the FACETS code is described in this paper Mechanisms that are used for coupling ID anomalous transport in the plasma core together with 2D transport in the plasma edge (in near separatrix and scrape-off-layer regions) are considered Results of the first verification studies based on predictive modeling of several analytical and experimental equilibria are presented (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:180 / 184
页数:5
相关论文
共 14 条
[1]  
ANDERSON E., 1999, LAPACK USERSGUIDE, V3rd
[2]   Overview of ITER-FEAT - The future international burning plasma experiment [J].
Aymar, R ;
Chuyanov, VA ;
Huguet, T ;
Shimomura, Y .
NUCLEAR FUSION, 2001, 41 (10) :1301-1310
[3]   Predicting temperature and density profiles in tokamaks [J].
Bateman, G ;
Kritz, AH ;
Kinsey, JE ;
Redd, AJ ;
Weiland, J .
PHYSICS OF PLASMAS, 1998, 5 (05) :1793-1799
[4]   THEORY-BASED TRANSPORT MODELING OF TFTR [J].
BATEMAN, G ;
WEILAND, J ;
NORDMAN, H ;
KINSEY, J ;
SINGER, C .
PHYSICA SCRIPTA, 1995, 51 (05) :597-601
[5]   First results from core-edge parallel composition in the FACETS project [J].
Cary, J. R. ;
Candy, J. ;
Cohen, R. H. ;
Krasheninnikov, S. ;
McCune, D. C. ;
Estep, D. J. ;
Larson, J. ;
Malony, A. D. ;
Pankin, A. ;
Worley, P. H. ;
Carlsson, J. A. ;
Hakim, A. H. ;
Hamill, P. ;
Kruger, S. ;
Miah, M. ;
Muzsala, S. ;
Pletzer, A. ;
Shasharina, S. ;
Wade-Stein, D. ;
Wang, N. ;
Balay, S. ;
McInnes, L. ;
Zhang, H. ;
Casper, T. ;
Diachin, L. ;
Epperly, T. ;
Rognlien, T. D. ;
Fahey, M. R. ;
Cobb, J. ;
Morris, A. ;
Shende, S. ;
Hammett, G. W. ;
Indireshkumar, K. ;
Stotler, D. ;
Pigarov, A. Yu .
SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
[6]  
DNESTROVSKY N, 1982, MATH PLASMA SIMULATI
[7]   Improved model for transport driven by drift modes in tokamaks [J].
Halpern, Federico D. ;
Eriksson, Annika ;
Bateman, Glenn ;
Kritz, Arnold H. ;
Pankin, Alexei ;
Wolfe, Christopher M. ;
Weiland, Jan .
Physics of Plasmas, 2008, 15 (01)
[8]   Simulations of internal transport barrier formation in tokamak discharges using the GLF23 transport model [J].
Kinsey, JE ;
Staebler, GM ;
Waltz, RE .
PHYSICS OF PLASMAS, 2002, 9 (05) :1676-1691
[9]   The National Transport Code Collaboration module library [J].
Kritz, AH ;
Bateman, G ;
Kinsey, J ;
Pankin, A ;
Onjun, T ;
Redd, A ;
McCune, D ;
Ludescher, C ;
Pletzer, A ;
Andre, R ;
Zakharov, L ;
Lodestro, L ;
Pearlstein, LD ;
Jong, R ;
Houlberg, W ;
Strand, P ;
Wiley, J ;
Valanju, P ;
John, HS ;
Waltz, R ;
Mandrekas, J ;
Mau, TK ;
Carlsson, J ;
Braams, B .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 164 (1-3) :108-113
[10]   A FULLY IMPLICIT, TIME-DEPENDENT 2-D FLUID CODE FOR MODELING TOKAMAK EDGE PLASMAS [J].
ROGNLIEN, TD ;
MILOVICH, JL ;
RENSINK, ME ;
PORTER, GD .
JOURNAL OF NUCLEAR MATERIALS, 1992, 196 :347-351