Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza

被引:72
作者
Allen, Chris [1 ]
Tsou, Ming-Hsiang [1 ]
Aslam, Anoshe [2 ]
Nagel, Anna [2 ]
Gawron, Jean-Mark [3 ]
机构
[1] San Diego State Univ, Dept Geog, San Diego, CA 92182 USA
[2] San Diego State Univ, Grad Sch Publ Hlth, San Diego, CA 92182 USA
[3] San Diego State Univ, Dept Linguist, San Diego, CA 92182 USA
基金
美国国家科学基金会;
关键词
TWEETS;
D O I
10.1371/journal.pone.0157734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Traditional methods for monitoring influenza are haphazard and lack fine-grained details regarding the spatial and temporal dynamics of outbreaks. Twitter gives researchers and public health officials an opportunity to examine the spread of influenza in real-time and at multiple geographical scales. In this paper, we introduce an improved framework for monitoring influenza outbreaks using the social media platform Twitter. Relying upon techniques from geographic information science (GIS) and data mining, Twitter messages were collected, filtered, and analyzed for the thirty most populated cities in the United States during the 2013-2014 flu season. The results of this procedure are compared with national, regional, and local flu outbreak reports, revealing a statistically significant correlation between the two data sources. The main contribution of this paper is to introduce a comprehensive data mining process that enhances previous attempts to accurately identify tweets related to influenza. Additionally, geographical information systems allow us to target, filter, and normalize Twitter messages.
引用
收藏
页数:10
相关论文
共 15 条
[1]  
[Anonymous], P INT C SOC MED WEBL
[2]  
[Anonymous], 2005, EUR C MACH LEARN
[3]   The Reliability of Tweets as a Supplementary Method of Seasonal Influenza Surveillance [J].
Aslam, Anoshe A. ;
Tsou, Ming-Hsiang ;
Spitzberg, Brian H. ;
An, Li ;
Gawron, J. Mark ;
Gupta, Dipak K. ;
Peddecord, K. Michael ;
Nagel, Anna C. ;
Allen, Christopher ;
Yang, Jiue-An ;
Lindsay, Suzanne .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2014, 16 (11)
[4]   When Google got flu wrong [J].
Butler, Declan .
NATURE, 2013, 494 (7436) :155-156
[5]   Influenza Forecasting with Google Flu Trends [J].
Dugas, Andrea Freyer ;
Jalalpour, Mehdi ;
Gel, Yulia ;
Levin, Scott ;
Torcaso, Fred ;
Igusa, Takeru ;
Rothman, Richard E. .
PLOS ONE, 2013, 8 (02)
[6]  
Dukic V, 2009, TRACKING FLU EPIDEMI
[7]   Diurnal and Seasonal Mood Vary with Work, Sleep, and Daylength Across Diverse Cultures [J].
Golder, Scott A. ;
Macy, Michael W. .
SCIENCE, 2011, 333 (6051) :1878-1881
[8]  
Lamb A., 2013, P 2013 C N AM CHAPTE, P789
[9]   The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets [J].
Nagel, Anna C. ;
Tsou, Ming-Hsiang ;
Spitzberg, Brian H. ;
An, Li ;
Gawron, J. Mark ;
Gupta, Dipak K. ;
Yang, Jiue-An ;
Han, Su ;
Peddecord, K. Michael ;
Lindsay, Suzanne ;
Sawyer, Mark H. .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2013, 15 (10) :263-275
[10]   Crowdsourcing What Is Where: Community-Contributed Photos as Volunteered Geographic Information [J].
Newsam, Shawn .
IEEE MULTIMEDIA, 2010, 17 (04) :36-45