DoA Estimation Using Low-Resolution Multi-Bit Sparse Array Measurements

被引:12
作者
Sedighi, Saeid [1 ]
Shankar, M. R. Bhavani [1 ]
Soltanalian, Mojtaba [2 ]
Ottersten, Bjorn [1 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, L-1855 Luxembourg, Luxembourg
[2] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Direction-of-arrival estimation; Estimation; Covariance matrices; Optimization; Quantization (signal); Sparse matrices; Simulation; Direction of arrival (DoA) estimation; low-resolution quantization; sparse linear arrays; few-bit quantization; PERFORMANCE; ANALOG;
D O I
10.1109/LSP.2021.3090647
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter studies the problem of Direction of Arrival (DoA) estimation from low-resolution few-bit quantized data collected by Sparse Linear Array (SLA). In such cases, contrary to the one-bit quantization case, the well known arcsine law cannot be employed to estimate the covaraince matrix of unquantized array data. Instead, we develop a novel optimization-based framework for retrieving the covaraince matrix of unquantized array data from low-resolution few-bit measurements. The MUSIC algorithm is then applied to an augmented version of the recovered covariance matrix to find the source DoAs. The simulation results show that increasing the sampling resolution to 2 or 4 bits per samples could significantly increase the DoA estimation performance compared to the one-bit sampling regime while the power consumption and implementation costs is still much lower in comparison to the high-resolution sampling implementations.
引用
收藏
页码:1400 / 1404
页数:5
相关论文
共 35 条
  • [1] DOA estimation using one-bit quantized measurements
    Bar-Shalom, O
    Weiss, AJ
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2002, 38 (03) : 868 - 884
  • [2] Bezdek J. C., 2003, Neural, Parallel & Scientific Computations, V11, P351
  • [3] Chen T., 2018, IEEE access, V6, p62 806
  • [4] Schur complements, Schur determinantal and Haynsworth inertia formulas in Euclidean Jordan algebras
    Gowda, M. Seetharama
    Sznajder, Roman
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (06) : 1553 - 1559
  • [5] Haykin S., 1993, RADAR ARRAY PROCESSI
  • [6] Horn R.A., 1986, Matrix Analysis
  • [7] Huang X., 2018, Int. Conf. on Wireless Comm. Sig. Proces. (WCSP), P1, DOI DOI 10.1109/WCSP.2018.8555529
  • [8] Direction-of-Arrival Estimation Based on Quantized Matrix Recovery
    Huang, Xiaodong
    Bi, Suzhi
    Liao, Bin
    [J]. IEEE COMMUNICATIONS LETTERS, 2020, 24 (02) : 349 - 353
  • [9] One-Bit MUSIC
    Huang, Xiaodong
    Liao, Bin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (07) : 961 - 965
  • [10] PERFORMANCE ANALYSIS FOR DOA ESTIMATION ALGORITHMS - UNIFICATION, SIMPLIFICATION, AND OBSERVATIONS
    LI, F
    LIU, H
    VACCARO, RJ
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1993, 29 (04) : 1170 - 1184