An anti-freezing wearable strain sensor based on nanoarchitectonics with a highly stretchable, tough, anti-fatigue and fast self-healing composite hydrogel

被引:49
|
作者
Wang, Yanqing [1 ,2 ]
Pang, Bo [1 ,2 ]
Wang, Rixuan [1 ,2 ]
Gao, Yiliang [1 ,2 ]
Liu, Yuetao [1 ,2 ]
Gao, Chuanhui [1 ,2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266042, Peoples R China
[2] Qingdao Univ Sci & Technol, Shandong Eco Chem Collaborat Innovat Ctr, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer-matrix composites (PMCs); Fracture toughness; Mechanical properties; Electrical properties; NETWORK HYDROGEL; ADHESIVE;
D O I
10.1016/j.compositesa.2022.107039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The application of conductive hydrogel sensors in wearable devices and electronic skin has aroused great research interest. However, hydrogel sensor cannot simultaneously have good self-healing properties, anti freezing properties and excellent anti-fatigue properties, which results in poor reusability and unstable sensing performance. A composite hydrogel was synthesized by one-pot method using polyvinyl alcohol, acrylamide, sodium alginate and glycerol as raw materials. The obtained hydrogel has excellent mechanical properties (0.51 MPa stress, 1500% elongation at break and tensile toughness of 3.6 MJ/m(3)) and fast self-healing performance with healing efficiency (HE) as high as 92% without any external stimulus. At the same time, glycerol has strong freeze resistance for hydrogels. The hydrogel can stably transmit electrical signals at subzero temperature (-20 degrees C). In addition, we also verified that the hydrogel could self-recover in a short time through cyclic stretching, indicating the fatigue resistance and rapid recovery of the material.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Ultrastretchable, Adhesive, Anti-freezing, Conductive, and Self-Healing Hydrogel for Wearable Devices
    Zhao, Xiaoli
    Wang, Huanxia
    Luo, Jinni
    Ren, Guanglei
    Wang, Jinfei
    Chen, Yuan
    Jia, Pengxiang
    ACS APPLIED POLYMER MATERIALS, 2022, 4 (03): : 1784 - 1793
  • [2] Self-healing, anti-freezing and highly stretchable polyurethane ionogel as ionic skin for wireless strain sensing
    Xu, Junhuai
    Wang, Hui
    Du, Xiaosheng
    Cheng, Xu
    Du, Zongliang
    Wang, Haibo
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [3] Self-healing, anti-freezing and highly stretchable polyurethane ionogel as ionic skin for wireless strain sensing
    Xu, Junhuai
    Wang, Hui
    Du, Xiaosheng
    Cheng, Xu
    Du, Zongliang
    Wang, Haibo
    Chemical Engineering Journal, 2021, 426
  • [4] Dual Conductive Network Hydrogel for a Highly Conductive, Self-Healing, Anti-Freezing, and Non-Drying Strain Sensor
    Han, Songjia
    Liu, Chunrui
    Lin, Xiaoyun
    Zheng, Jiwen
    Wu, Jin
    Liu, Chuan
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (02) : 996 - 1005
  • [5] Highly stretchable, anti-freezing, self-adhesion and self-healing zwitterionic hydrogel electrolytes for flexible electronic devices
    Zheng, Jingxuan
    Liang, Jingye
    Xu, Jishuai
    Lu, Fangying
    Yu, Hanbin
    Liu, Yong
    Wang, Run
    CHEMICAL ENGINEERING JOURNAL, 2025, 508
  • [6] A self-adhesive wearable strain sensor based on a highly stretchable, tough, self-healing and ultra-sensitive ionic hydrogel
    Yin, Jianyu
    Pan, Shenxin
    Wu, Lili
    Tan, Liyina
    Chen, Di
    Huang, Shan
    Zhang, Yuhong
    He, Peixin
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (48) : 17349 - 17364
  • [7] Mussel-inspired stretchable, anti-fatigue, self-healing and biocompatible hydrogel adhesives
    Zhang, Kaiyi
    Yang, Sheng'ao
    Liu, Yinghua
    Teng, Hao
    Zhang, Yifan
    Luo, Faliang
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (39)
  • [8] Self-healing and anti-freezing graphene-hydrogel-graphene sandwich strain sensor with ultrahigh sensitivity†
    Wu, Lu
    Fan, Mingshuai
    Qu, Meijie
    Yang, Shuaitao
    Nie, Jia
    Tang, Ping
    Pan, Lujun
    Wang, Hai
    Bin, Yuezhen
    JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (13) : 3088 - 3096
  • [9] High strength, self-healing, and anti-freezing polyurethane ionogel based on multiple hydrogen bonding for wearable strain sensor
    Wen, Xiao
    Xu, Junhuai
    Wang, Haibo
    Du, Zongliang
    Wang, Shuang
    Cheng, Xu
    POLYMER ENGINEERING AND SCIENCE, 2022, 62 (10): : 3132 - 3143
  • [10] A highly stretchable, self-adhesive, anti-freezing dual-network conductive carboxymethyl chitosan based hydrogel for flexible wearable strain sensor
    Wang, Shuai
    Li, Jinyang
    Zhang, Li
    Ren, Fazhan
    Zhang, Jiale
    Ren, Lili
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 308