Threshold phenomenon and traveling waves for heterogeneous integral equations and epidemic models

被引:3
作者
Ducasse, Romain [1 ,2 ]
机构
[1] Univ Paris, F-75006 Paris, France
[2] Sorbonne Univ, CNRS, Lab Jacques Louis Lions LJLL, F-75006 Paris, France
关键词
Nonlinear integral equations; Integro-differential systems; Epidemiology; SIR models; Threshold phenomenon; Traveling waves; Anisotropic equations; Heterogeneous models; REACTION-DIFFUSION SYSTEM; PRINCIPAL EIGENVALUE; MATHEMATICAL-THEORY; ELLIPTIC-OPERATORS; ASYMPTOTIC SPEEDS; SPREAD; PROPAGATION;
D O I
10.1016/j.na.2022.112788
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some anisotropic heterogeneous nonlinear integral equations arising in epidemiology. We focus on the case where the heterogeneities are spatially periodic. In the first part of the paper, we show that the equations we consider exhibit a threshold phenomenon. In the second part, we study the existence and nonexistence of traveling waves, and we provide a formula for the admissible speeds. In a third part, we apply our results to a spatial heterogeneous SIR model. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:34
相关论文
共 34 条
[1]  
[Anonymous], 1972, Advances in Applied Probability, DOI DOI 10.2307/1425997
[2]  
[Anonymous], 1977, Research Notes in Mathematics
[3]   MEASLES PERIODICITY AND COMMUNITY SIZE [J].
BARTLETT, MS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-GENERAL, 1957, 120 (01) :48-70
[4]  
Berestycki H, 2006, J EUR MATH SOC, V8, P195
[5]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[6]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[7]  
Berestycki H, 2007, CONTEMP MATH, V446, P101
[8]   Propagation of Epidemics Along Lines with Fast Diffusion [J].
Berestycki, Henri ;
Roquejoffre, Jean-Michel ;
Rossi, Luca .
BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (01)
[9]   Generalized principal eigenvalues for heterogeneous road-field systems [J].
Berestycki, Henri ;
Ducasse, Romain ;
Rossi, Luca .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (01)
[10]   On the definition and the properties of the principal eigenvalue of some nonlocal operators [J].
Berestycki, Henri ;
Coville, Jerome ;
Vo, Hoang-Hung .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (10) :2701-2751