The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass

被引:22
作者
Arslan, Baran [1 ]
Colpan, Mert [1 ]
Ju, Xiaohui [2 ]
Zhang, Xiao [2 ]
Kostyukova, Alla [1 ]
Abu-Lail, Nehal I. [1 ]
机构
[1] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA
[2] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Bioprod Sci & Engn Lab, Richland, WA 99354 USA
基金
美国国家科学基金会;
关键词
STEAM PRETREATED SOFTWOOD; ENZYMATIC-HYDROLYSIS; TRICHODERMA-REESEI; DIELECTRIC-PROPERTIES; FUNCTIONAL-GROUPS; RESIDUAL LIGNINS; CELLULOSE; SURFACE; ADSORPTION; ENZYMES;
D O I
10.1021/acs.biomac.6b00129
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I) and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity and the surface energy of lignin that facilitates the LW forces should be a priori to avoid nonproductive binding of cellulase to kraft lignin.
引用
收藏
页码:1705 / 1715
页数:11
相关论文
共 60 条
[1]   Enzymatic Hydrolysis of Native Cellulose Nanofibrils and Other Cellulose Model Films: Effect of Surface Structure [J].
Ahola, S. ;
Turon, X. ;
Osterberg, M. ;
Laine, J. ;
Rojas, O. J. .
LANGMUIR, 2008, 24 (20) :11592-11599
[2]  
[Anonymous], 1967, Methods of wood chemistry
[3]   Heterogeneity and Specificity of Nanoscale Adhesion Forces Measured between Self-Assembled Mono layers and Lignocellulosic Substrates: A Chemical Force Microscopy Study [J].
Arslan, Baran ;
Ju, Xiaohui ;
Zhang, Xiao ;
Abu-Lail, Nehal I. .
LANGMUIR, 2015, 31 (37) :10233-10245
[4]   Optimization of enzyme complexes for lignocellulose hydrolysis [J].
Berlin, Alex ;
Maximenko, Vera ;
Gilkes, Neil ;
Saddler, Jack .
BIOTECHNOLOGY AND BIOENGINEERING, 2007, 97 (02) :287-296
[5]   Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations [J].
Berlin, Alex ;
Balakshin, Mikhail ;
Gilkes, Neil ;
Kadla, John ;
Maximenko, Vera ;
Kubo, Satoshi ;
Saddler, Jack .
JOURNAL OF BIOTECHNOLOGY, 2006, 125 (02) :198-209
[6]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[7]  
Bjerrum J., 1957, STABILITY CONSTANT 2
[8]   Carbohydrate-binding modules: fine-tuning polysaccharide recognition [J].
Boraston, AB ;
Bolam, DN ;
Gilbert, HJ ;
Davies, GJ .
BIOCHEMICAL JOURNAL, 2004, 382 (03) :769-781
[9]   Steric forces measured with the atomic force microscope at various temperatures [J].
Butt, HJ ;
Kappl, M ;
Mueller, H ;
Raiteri, R ;
Meyer, W ;
Rühe, J .
LANGMUIR, 1999, 15 (07) :2559-2565
[10]   Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? [J].
Chandra, R. P. ;
Bura, R. ;
Mabee, W. E. ;
Berlin, A. ;
Pan, X. ;
Saddler, J. N. .
BIOFUELS, 2007, 108 :67-93