Passiflora morifolia, which under natural conditions contains cyanohydrin glucosides linamarin, lotaustralin and epilotaustralin, converted cyclopentanecarbonitrile, 2-cyclopentenecarbonitrile and 3-methylbutanenitrile into the corresponding cyanohydrin glucosides. Turnera angustifolia, which normally produces glucosides of cyclopentenone cyanohydrin, converted cyclopentanecarbonitrile, 2-methylpropanenitrile and 2-methylbutanenitrile, but not 3-methylbutanenitrile, into the corresponding cyanohydrin glucosides. Mixtures of epimers were produced when these glucosides contained chiral cyanohydrin carbon atoms. Feeding with cyclopentanecarbonitrile resulted in formation of 1-(beta-D-glucopyranosyloxy)cyclopentanecarbonitrile, a saturated analogue of deidaclin and tetraphyllin A. Neither plant utilized cyclopropanecarbonitrile as substrate. The experiments demonstrate broad substrate specificity of nitrile hydroxylases present in these plants. A novel glycoside, 2-[6-O-(beta-D-xylopyranosyl)-beta-D-glucopyranosyloxy]propane (isopropyl primeveroside), was isolated from P, morifolia. The compound represents a rare example of natural isopropyl glycoside; its characterization included assignment of all H-1 and C-13 NMR signals of the primeverosyl group using two-dimensional NMR methods. Biosynthesis of the isopropyl moiety of the primeveroside is unclear, but the formation of alcohols corresponding to natural cyanohydrins may be a previously unrecognized extension of the cyanohydrin biosynthesis pathway in higher plants.