Unconventional geometric quantum computation

被引:246
|
作者
Zhu, SL
Wang, ZD
机构
[1] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] S China Normal Univ, Dept Phys, Guangzhou, Peoples R China
[3] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Peoples R China
关键词
D O I
10.1103/PhysRevLett.91.187902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new class of unconventional geometric gates involving nonzero dynamic phases, and elucidate that geometric quantum computation can be implemented by using these gates. Comparing with the conventional geometric gate operation, in which the dynamic phase shift must be removed or avoided, the gates proposed here may be operated more simply. We illustrate in detail that unconventional nontrivial two-qubit geometric gates with built-in fault-tolerant geometric features can be implemented in real physical systems.
引用
收藏
页码:187902 / 187902
页数:4
相关论文
共 50 条
  • [31] Dynamical-corrected nonadiabatic geometric quantum computation
    ChengYun Ding
    Li Chen
    LiHua Zhang
    ZhengYuan Xue
    Frontiers of Physics, 2023, 18 (06) : 254 - 264
  • [32] Geometric quantum computation using nuclear magnetic resonance
    Jonathan A. Jones
    Vlatko Vedral
    Artur Ekert
    Giuseppe Castagnoli
    Nature, 2000, 403 : 869 - 871
  • [33] Nonadiabatic Geometric Quantum Computation with Parametrically Tunable Coupling
    Chen, Tao
    Xue, Zheng-Yuan
    PHYSICAL REVIEW APPLIED, 2018, 10 (05):
  • [34] Coherence-protected nonadiabatic geometric quantum computation
    Li, K. Z.
    Xu, G. F.
    Tong, D. M.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [35] Geometric quantum computation using nuclear magnetic resonance
    Jones, JA
    Vedral, V
    Ekert, A
    Castagnoli, G
    NATURE, 2000, 403 (6772) : 869 - 871
  • [36] Geometric quantum computation on solid-state qubits
    Choi, MS
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (46) : 7823 - 7833
  • [37] Differential geometric treewidth estimation in adiabatic quantum computation
    Wang, Chi
    Jonckheere, Edmond
    Brun, Todd
    QUANTUM INFORMATION PROCESSING, 2016, 15 (10) : 3951 - 3966
  • [38] Fast super robust nonadiabatic geometric quantum computation
    Zhang, Yifu
    Ma, Lei
    PHYSICS LETTERS A, 2024, 521
  • [39] Flexible scheme for the implementation of nonadiabatic geometric quantum computation
    Kang, Yi-Hao
    Shi, Zhi-Cheng
    Huang, Bi-Hua
    Song, Jie
    Xia, Yan
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [40] Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms
    Liu, Bao-Jie
    Su, Shi-Lei
    Yung, Man-Hong
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):