Unconventional geometric quantum computation

被引:246
|
作者
Zhu, SL
Wang, ZD
机构
[1] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] S China Normal Univ, Dept Phys, Guangzhou, Peoples R China
[3] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Peoples R China
关键词
D O I
10.1103/PhysRevLett.91.187902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new class of unconventional geometric gates involving nonzero dynamic phases, and elucidate that geometric quantum computation can be implemented by using these gates. Comparing with the conventional geometric gate operation, in which the dynamic phase shift must be removed or avoided, the gates proposed here may be operated more simply. We illustrate in detail that unconventional nontrivial two-qubit geometric gates with built-in fault-tolerant geometric features can be implemented in real physical systems.
引用
收藏
页码:187902 / 187902
页数:4
相关论文
共 50 条
  • [21] Noncyclic geometric quantum computation with shortcut to adiabaticity
    Lv, Qing-Xian
    Liang, Zhen-Tao
    Liu, Hong-Zhi
    Liang, Jia-Hao
    Liao, Kai-Yu
    Du, Yan-Xiong
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [22] Geometric manipulation of trapped ions for quantum computation
    Duan, LM
    Cirac, JI
    Zoller, P
    SCIENCE, 2001, 292 (5522) : 1695 - 1697
  • [23] Observable-Geometric Phases and Quantum Computation
    Zeqian Chen
    International Journal of Theoretical Physics, 2020, 59 : 1255 - 1276
  • [24] Nonadiabatic geometric quantum computation with trapped ions
    Li, XQ
    Cen, LX
    Huang, GX
    Ma, L
    Yan, YJ
    PHYSICAL REVIEW A, 2002, 66 (04):
  • [25] Geometric quantum computation and dynamical invariant operators
    Wang, Z. S.
    PHYSICAL REVIEW A, 2009, 79 (02):
  • [26] Nodal free geometric phases:: Concept and application to geometric quantum computation
    Ericsson, Marie
    Kult, David
    Sjoqvist, Erik
    Aberg, Johan
    PHYSICS LETTERS A, 2008, 372 (05) : 596 - 599
  • [27] Unconventional geometric quantum phase gates with two SQUIDs in a cavity
    Xia, Li-Xin
    Xie, Qiong-Tao
    OPTICS COMMUNICATIONS, 2008, 281 (09) : 2700 - 2704
  • [28] Unconventional geometric quantum phase gates with a cavity QED system
    Zheng, SB
    PHYSICAL REVIEW A, 2004, 70 (05): : 052320 - 1
  • [29] Unconventional Computation
    Stepney, Susan
    ERCIM NEWS, 2011, (85): : 2 - 3
  • [30] Nonadiabatic geometric quantum computation with asymmetric superconducting quantum interference device
    Hao, SR
    Hou, BY
    Xi, XQ
    Yue, RH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (03) : 285 - 291