γ-ray strength function method and its application to 107Pd

被引:42
作者
Utsunomiya, H. [1 ]
Goriely, S. [2 ]
Akimune, H. [1 ]
Harada, H. [3 ]
Kitatani, F. [3 ]
Goko, S. [3 ]
Toyokawa, H. [4 ]
Yamada, K. [4 ]
Kondo, T. [1 ]
Itoh, O. [1 ]
Kamata, M. [1 ]
Yamagata, T. [1 ]
Lui, Y. -W. [5 ]
Daoutidis, I. [2 ]
Arteaga, D. P. [6 ]
Hilaire, S. [7 ]
Koning, A. J. [8 ]
机构
[1] Konan Univ, Dept Phys, Higashinada Ku, Kobe, Hyogo 6588501, Japan
[2] Univ Libre Bruxelles, Inst Astron & Astrophys, B-1050 Brussels, Belgium
[3] Japan Atom Energy Agcy, Naka, Ibaraki 3191195, Japan
[4] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
[5] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA
[6] Univ Paris 11, Inst Phys Nucl, CNRS, IN2P3, F-91406 Orsay, France
[7] DIF, CEA, DAM, F-91297 Arpajon, France
[8] Nucl Res & Consultancy Grp, NL-1755 ZG Petten, Netherlands
来源
PHYSICAL REVIEW C | 2010年 / 82卷 / 06期
关键词
NUCLEI;
D O I
10.1103/PhysRevC.82.064610
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The gamma-ray strength function method is devised to indirectly determine radiative neutron capture cross sections for radioactive nuclei. This method is applied here to the Pd-107 (T-1/2 = 6.5 x 10(6) yr) case. Photoneutron cross sections were measured for Pd-105,Pd-106,Pd-108 near neutron threshold with quasimonochromatic laser-Compton-scattering gamma-ray beams. These photoneutron cross sections as well as the reverse radiative neutron capture cross sections for Pd-104,Pd-105 are used to provide constraints on the Pd-107(n,gamma)Pd-108 cross section.
引用
收藏
页数:5
相关论文
共 23 条
[1]  
Brink D. M., 1955, Ph.D. thesis
[2]   RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations [J].
Capote, R. ;
Herman, M. ;
Oblozinsky, P. ;
Young, P. C. ;
Goriely, S. ;
Belgya, T. ;
Ignatyuk, A. V. ;
Koning, A. J. ;
Hilaire, S. ;
Plujko, V. A. ;
Avrigeanu, M. ;
Bersillon, O. ;
Chadwick, M. B. ;
Fukahori, T. ;
Ge, Zhigang ;
Han, Yinlu ;
Kailas, S. ;
Kopecky, J. ;
Maslov, V. M. ;
Reffo, G. ;
Sin, M. ;
Soukhovitskii, E. Sh. ;
Talou, P. .
NUCLEAR DATA SHEETS, 2009, 110 (12) :3107-3213
[3]  
CORNELIS E, 1982, P INT C NUCL DAT SCI, P222
[4]   Determining neutron capture cross sections via the surrogate reaction technique [J].
Forssen, C. ;
Dietrich, F. S. ;
Escher, J. ;
Hoffman, R. D. ;
Kelley, K. .
PHYSICAL REVIEW C, 2007, 75 (05)
[5]   Microscopic HFB plus QRPA predictions of dipole strength for astrophysics applications [J].
Goriely, S ;
Khan, E ;
Samyn, M .
NUCLEAR PHYSICS A, 2004, 739 (3-4) :331-352
[6]   Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method [J].
Goriely, S. ;
Hilaire, S. ;
Koning, A. J. .
PHYSICAL REVIEW C, 2008, 78 (06)
[7]   Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis [J].
Goriely, S .
PHYSICS LETTERS B, 1998, 436 (1-2) :10-18
[8]   Response of a high-resolution high-energy photon spectrometer (HHS) to monochromatic high-energy gamma rays [J].
Harada, H ;
Furutaka, K ;
Nakamura, S ;
Osaka, K ;
Akimune, H ;
Utsunomiya, H ;
Ohsaki, T ;
Igashira, M .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 554 (1-3) :306-313
[9]  
HOCKENBURY RW, 1975, P INT C NUCL CROSS S, V2, P905
[10]  
KADMENSKII SG, 1983, SOV J NUCL PHYS+, V37, P165