Strong Discrete Morse Theory and Simplicial L-S Category: A Discrete Version of the Lusternik-Schnirelmann Theorem

被引:3
作者
Fernandez-Ternero, Desamparados [1 ]
Macias-Virgos, Enrique [2 ]
Scoville, Nicholas A. [3 ]
Vilches, Jose Antonio [1 ]
机构
[1] Univ Seville, Dept Geometria & Topol, Seville, Spain
[2] Univ Santiago de Compostela, Dept Matemat, Santiago De Compostela, Spain
[3] Ursinus Coll, Dept Math & Comp Sci, 610 E Main St, Collegeville, PA 19426 USA
关键词
Simplicial Lusternik-Schnirelmann category; Strong collapsibility; Discrete Morse theory; Strong homotopy type;
D O I
10.1007/s00454-019-00116-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a discrete version of the Lusternik-Schnirelmann (L-S) theorem for discrete Morse functions and the recently introduced simplicial L-S category of a simplicial complex. To accomplish this, a new notion of critical object of a discrete Morse function is presented, which generalizes the usual concept of critical simplex (in the sense of R. Forman). We show that the non-existence of such critical objects guarantees the strong homotopy equivalence (in the Barmak and Minian's sense) between the corresponding sublevel complexes. Finally, we establish that the number of critical objects of a discrete Morse function defined on K is an upper bound for the non-normalized simplicial L-S category of K.
引用
收藏
页码:607 / 623
页数:17
相关论文
共 17 条
[1]   LUSTERNIK-SCHNIRELMANN CATEGORY FOR SIMPLICIAL COMPLEXES [J].
Aaronson, Seth ;
Scoville, Nicholas A. .
ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (03) :743-753
[2]  
[Anonymous], 1973, A Course in Simple-Homotopy Theory
[3]  
[Anonymous], 1934, Methodes topologiques dans les problemes variationnels
[4]   Algebraic Topology of Finite Topological Spaces and Applications [J].
Barmak, Jonathan A. .
ALGEBRAIC TOPOLOGY OF FINITE TOPOLOGICAL SPACES AND APPLICATIONS, 2011, 2032 :151-159
[5]   Strong Homotopy Types, Nerves and Collapses [J].
Barmak, Jonathan Ariel ;
Minian, Elias Gabriel .
DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (02) :301-328
[6]  
Chavez M-J, 2014, B ACAD STIINE REPUB, V2014, P44
[7]  
Cornea O., 2003, Lusternik-Schnirelmann Category
[8]   Discrete Morse Theory for Computing Cellular Sheaf Cohomology [J].
Curry, Justin ;
Ghrist, Robert ;
Nanda, Vidit .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (04) :875-897
[9]   Lusternik-Schnirelmann category of simplicial complexes and finite spaces [J].
Fernandez-Ternero, D. ;
Macias-Virgos, E. ;
Vilches, J. A. .
TOPOLOGY AND ITS APPLICATIONS, 2015, 194 :37-50
[10]   SIMPLICIAL LUSTERNIK-SCHNIRELMANN CATEGORY [J].
Fernandez-Ternero, Desamparados ;
Macias-Virgos, Enrique ;
Minuz, Erica ;
Vilches, Jose Antonio .
PUBLICACIONS MATEMATIQUES, 2019, 63 (01) :265-293