Quenching for degenerate parabolic equations

被引:28
作者
Ke, L [1 ]
Ning, S [1 ]
机构
[1] Univ SW Louisiana, Dept Math, Lafayette, LA 70504 USA
关键词
degenerate parabolic equations; quenching; critical length; upper and lower solutions;
D O I
10.1016/S0362-546X(98)00039-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1123 / 1135
页数:13
相关论文
共 17 条
[1]  
Acker A., 1978, Nonlinear Analysis Theory, Methods & Applications, V2, P499, DOI 10.1016/0362-546X(78)90057-3
[2]  
Chan C. Y., 1993, Neural, Parallel & Scientific Computations, V1, P153
[3]  
Chan C.Y., 1996, P DYNAMIC SYSTEMS AP, V2, P107
[4]   QUENCHING FOR SEMILINEAR SINGULAR PARABOLIC PROBLEMS [J].
CHAN, CY ;
KAPER, HG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (03) :558-566
[5]   PARABOLIC QUENCHING FOR NONSMOOTH CONVEX DOMAINS [J].
CHAN, CY ;
KE, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 186 (01) :52-65
[6]   QUENCHING PHENOMENA FOR SINGULAR NONLINEAR PARABOLIC EQUATIONS [J].
CHAN, CY ;
KWONG, MK .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (12) :1377-1383
[7]   A NUMERICAL-METHOD FOR SEMILINEAR SINGULAR PARABOLIC QUENCHING PROBLEMS [J].
CHAN, CY ;
CHEN, CS .
QUARTERLY OF APPLIED MATHEMATICS, 1989, 47 (01) :45-57
[8]  
CHAN CY, 1994, APPL ANAL, V54, P17
[9]  
CHAN CY, 1996, P DYNAMIC SYSTEMS AP, V2, P115
[10]  
CHAN CY, 1994, P DYN SYST APPL, V1, P51