A Fluorescence-Activated Cell Sorter Analysis of the Relationship Between Protein Kinase G and Endothelial Nitric Oxide Synthase

被引:2
作者
John, Theresa A. [1 ]
Raj, J. Usha [1 ]
机构
[1] Harbor UCLA Med Ctr, Los Angeles Biomed Res Inst, Div Neonatol, Dept Pediat, Torrance, CA 90509 USA
来源
ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY | 2010年 / 293卷 / 10期
关键词
nitric oxide sythase; protein kinase G; nitric oxide; phosphorylation; AKT-DEPENDENT PHOSPHORYLATION; NO SYNTHASE; HSP90; CAVEOLAE; RELEASE; ENOS;
D O I
10.1002/ar.21169
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
The process of regulation of NOS after production of nitric oxide is not yet delineated. Protein kinase G may exert a feedback regulation of this enzyme. We used diaminofluorescein assays to detect changes in basal nitric oxide production caused by modulators of protein kinase G activity in freshly isolated ovine lung microvascular endothelial cells. We also used fluorescence activated cell sorter analysis (FACS) to determine molecular and phosphorylation changes caused by PKG activation with 8-Br-cGMP. The PKG activator, 8-Br-cGMP (100 mu M) produced a shift in the basal NO production curve downward. The inhibition began within 5 min and was sustained over 4.5 hr. The two protein kinase G inhibitors 100 mu M Rp-8-Br-PET-cGMPS and 50 nM guanosine 3'-5'-cyclic monophosphoro thionate-8-Br-Rp isomer Na salt and the cGMP inhibitor 4 mu M Rp-8-pCPT-cGMPS all enhanced NO production as seen by the upward shift in the basal NO curve. Conversely, the PKG activator drug, 100 mu M guanosine-3'-5'-cyclic monophosphate-beta-phenyl-1NF-ethano-8-bromo sodium salt decreased NO production causing a downward shift in the basal curve. FACS analysis revealed that 5 mu M 8-Br-cGMP in <5 min caused an increase in N-terminal labeling of NOS and a decrease in both C-terminal and serine 1177 labeling of NOS. 8-Br-cGMP appeared to increase PKG 1 alpha and to decrease PKG 1 beta labeling. Changes in other phosphorylation sites were less consistent but overall mean channel fluorescence increased from 19.92 to 217.36 for serine 116 and decreased from 329.27 to 254.03 for threonine 495 phosphorylation. Data indicated that PKG caused both molecular and phosphorylation changes in NOS. Anat Rec, 293:1755-1765, 2010. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:1755 / 1765
页数:11
相关论文
共 29 条
[1]   MOLECULAR AND CELLULAR PROPERTIES OF PECAM-1 (ENDOCAM/CD31) - A NOVEL VASCULAR CELL CELL-ADHESION MOLECULE [J].
ALBELDA, SM ;
MULLER, WA ;
BUCK, CA ;
NEWMAN, PJ .
JOURNAL OF CELL BIOLOGY, 1991, 114 (05) :1059-1068
[2]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[3]   Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms -: Role of protein kinase A [J].
Boo, YC ;
Sorescu, G ;
Boyd, N ;
Shiojima, L ;
Walsh, K ;
Du, J ;
Jo, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3388-3396
[4]   Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells [J].
Brouet, A ;
Sonveaux, P ;
Dessy, C ;
Balligand, JL ;
Feron, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (35) :32663-32669
[5]   AMP-activated protein kinase phosphorylation of endothelial NO synthase [J].
Chen, ZP ;
Mitchelhill, KI ;
Michell, BJ ;
Stapleton, D ;
Rodriguez-Crespo, I ;
Witters, LA ;
Power, DA ;
de Montellano, PRO ;
Kemp, BE .
FEBS LETTERS, 1999, 443 (03) :285-289
[6]   NOSIP, a novel modulator of endothelial nitric oxide synthase activity [J].
Dedio, J ;
König, P ;
Wohlfart, P ;
Schroeder, C ;
Kummer, W ;
Müller-Esterl, W .
FASEB JOURNAL, 2001, 15 (01) :79-89
[7]   Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation [J].
Dimmeler, S ;
Fleming, I ;
Fisslthaler, B ;
Hermann, C ;
Busse, R ;
Zeiher, AM .
NATURE, 1999, 399 (6736) :601-605
[8]   The endothelial nitric-oxide synthase-caveolin regulatory cycle [J].
Feron, O ;
Saldana, F ;
Michel, JB ;
Michel, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (06) :3125-3128
[9]   Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release [J].
Fontana, J ;
Fulton, D ;
Chen, Y ;
Fairchild, TA ;
McCabe, TJ ;
Fujita, N ;
Tsuruo, T ;
Sessa, WC .
CIRCULATION RESEARCH, 2002, 90 (08) :866-873
[10]  
Fulton D, 2001, J PHARMACOL EXP THER, V299, P818